学年

教科

質問の種類

数学 高校生

⑵です。場合分けをしていますがアの2はどうやって出てくるのでしょうか?解説お願いします🙇‍♀️

Ⅱ微分・積分 系 f(x) = 12/2 > 0² ●最小はココ word (ア(イ)より,x>1 における f(x) の増減表は次のようになる. If'(x) f(x) ... の必勝ポイント これは最小にならない これ √10 2 20 最小 + 7 2 √10 増減表より, f(x) を最小にするxの値は,x=- 2 4170だからね 解説講義 絶対値をつけたまま積分することはできない. 絶対値を扱うときの基本は 「絶対値の中身 の正負に注目して絶対値を外すこと」である.x-1≧0 やx-1<0 を解いて,解答の①を 求めてもよいが,y=|x-1|のグラフを考えてみると様子がつかみやすい.y=f(x) | のグ ラフは,y=f(x)のグラフのx軸の下側にはみ出した部分を上に折り返すだけであり、数秒で 描くことができる.(絶対値がついているので,負になる部分を正に変えればよいからである) (2)はグラフを使った考察を行わないと苦しい. + y=|p-xt|=|t(t-x) | は, y=-xt と y=-t+xtのグラフから構成されていて、 “グラ コが切り替わるところ” は t=0 と t = x である.そこで,積分区間の1から2の間にt=x が まれる場合と、含まれない場合に分けて考えることになる. (ア), (イ)の2通りに分けて f(x) 準備したら、1<x<2では(ア)の関数を, 2≦x では (イ)の関数を使い, 増減表を作ってf(x) の する様子を捉えればよい. 絶対値を含む関数の積分 ① 絶対値を外して、 範囲に応じて関数を使い分 便利 ! ) (+) フが

解決済み 回答数: 1
数学 高校生

答えを見てもよくわからないので教えてもらいたいです!

AX の和 9,35 用 確率と漸化式 (1) 日本 例題 37 00000 12, 3, 4,5,6,7, 8 の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 この回の試行で、数字8のカードが取り出 をnの式で表せ。 される回数が奇数である確率 CHART 確率と漸化式 2回目と (n+1) 回目に着目 & SOLUTION 回の試行で、数字8のカードが取り出される回数が奇数である n 確率がpn であるから, 偶数である確率は 1-pr (n+1)回の試行でDn+1 を求めるには, 次の2つの場合を考える。 n回の試行で奇数回で, (n+1) 回目に8以外のカードを取り出す [1] n n [2] 回の試行で偶数回で, (n+1)回目に8のカードを取り出す 解答 (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1)回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1)回目に8のカードが取り出される のいずれかであり, [1], [2] は互いに排反であるから 7 Pn+1=Pn• g + (1 − Pn) • _ _ = ³ / Pn + = = = 3 8 LO 変形すると したがって Pn+1 Pi +- 2 - ³ (P-1) 4 1 3/YOSH 1 1 1 2 8 2 また よって,数列{ po-12/2} は初項 - 18 公比 24 の等比数列で 3 3 あるから 1 2 - 3/3\n-1 8 4 3 8 Pn 1 1/3\n pn = ²/2 - 1/2 (³)" - ²1 (1-(³)"} Pn = 24 (1) P1, P2 を求めよ。 (C) 1 (3) Pm を求めよ。 D 8 98* 30 (+1)回目 inf. ① 確率の加法定理 事象 A,Bが互いに排反 (A∩B=①) のとき P(AUB)=P(A)+P(B) ② 独立な試行S, Tで、 Sでは事象A, Tでは 事象Bが起こる事象をC とすると P(C)=P(A)P(B) =-2a+1/2 を解くと a=²1/22 は 1枚目のカード が8の確率であるから 1 Aneke PRACTICE 37 ③ さいころをn回投げるとき,6の目が出た回数をXとし,Xが偶数である確率をP とする。 (2) P1 をP を用いて表せ。 (1) [学習院大 ]

回答募集中 回答数: 0
数学 高校生

55.1 点線の下線部、x^n-1=(x-1)...のところがあまりピンときません。なぜこう言えるのでしょうか??

(x-2)で を考える。 二余りは、 1 または定数 , 2 b,cの を見つけな 1式)から ち6=3 下の練習 5 有効である。 を 伺ったときの すると、 ら (x-2)(x) +2)+R(土) 2 +al+RU を代入 がらで ったときの余り 00000 2以上の自然数とするとき, x-1 を (x-1)^2で割ったときの余りを求 [学習院大 ] めよ。 3x100+ 2x7 +1をx2 +1で割ったときの余りを求めよ。 ( 2 ) 指針 .88~90 でも学習したように, 実際に割り算して余りを求めるのは非現実的である。 ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意 B = 0 を考える がポイント。 (1) (2) ともに割る式は2次式であるから, 余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが、それだけでは足りない。 そこで,次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 a"-6"=(a-b)(a-1+α 2b+α"-362+ +ab+b^-1) (2) x2+1=0の解はx=± x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b | 解 (1) 二項定理の利用。 とすると 次の等式が成り立つ。 x-1={(x-1)+1}"-1 x-1=(x-1)'Q(x)+ax+b..... ① 両辺にx=1 を代入すると ① に代入して x"-1=(x-1)'Q(x)+ax-a 0=a+b すなわち b = -a =(x-1){(x-1)Q(x)+α} ここで, x”−1=(x-1)(x"-1+x"-2+ ······ +1) であるから x-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α 個 b=-n b=-αであるから a=n よって ゆえに, 求める余りは nx-n (2) 3x100+ 2x97 +1 を x²+1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 両辺にx=i を代入すると 3i100+2i07+1=ai+b j100= (i2)50=(−1)=1, 7°= (j') i=(-1) i=i であるから 3・1+2i+1=ai+b 4+2i=b+ai すなわち α, b は実数であるから したがって 求める余りは 基本 53,54 a=2, b=4 2x+4 練習 (1) 955 (2) x2+x+1をx+4で割ったときの余りを求めよ。 Ch(x-1)"+..+n C2(x-1) 2 + Ci(x-1)+1−1 =(x-1)^{(x-1)^2+...+nC2} nx-n ゆえに,余りは nx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 xiは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから, 余りの係数も当 然実数である。 2以上の自然数とするとき, x を (x-2)で割ったときの余りを求めよ。 p.94 EX39 91 2章 10 剰余の定理と因数定理

解決済み 回答数: 1
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

117.2 文末これでもいいですか??

とき、 3 着目 不可能。 める 性質を ■は から, 余り 1 に割っ 4 り 余り 5 は 4 のと 基本例題117 余りによる整数の分類 nは整数とする。次のことを証明せよ。 (1) 共立薬大 (2) 学習院大] (1) 2²は3の倍数である。(2n+1は5で割り切れない。 p.485 基本事項 ② 重要 119,120 指針 すべての整数は,正の整数mを用いて,次のいずれかの形で表される。 (kは整数) mk, mk+1, mk+2, ******, mk+(m-1) ←mで割った余りが 0 1,2,... m-1 そして,この m の値は,問題に応じて決める。 (1) 「3の倍数である」=「3で割り切れる」であるから、3で割ったときの余りを考える。 したがって, 整数全体を, 3k, 3k+1, 3k+2に分けて考える。 (0) (2) (2)5で割った余りを考えるから, 整数全体を,5k, 5k+1,5k+2,5k+3,5k+4に分 けて考える。 【CHART 整数の分類 余りで分類 mで割った余りは0,1,2,...., m-1 → mk, mk+1, mk+2,.., mk+(m-1) (1+x 解答 (1) すべての整数nは, 3k, 3k+1, 3k+2 (kは整数) のいず れかの形で表される。 n¹+2n²=n²(n²+2) (534²5 [1] n=3kのとき n²+2n²=9k² (9k²+2) = 3.3k²(9k²+2) [2] n=3k+1²n^+2n² = (3k+1)²(9k²+6k+1+2) =3(3k+1)²(3k²+2k+1) [3] n=3k+2のとき n+2n²=(3k+2)(9k²+12k+4+2) =3(3k+2)²(3k²+4k+2) よって、2²は3の倍数である。 Ⅱ (2) すべての整数 n は, 5k, 5k+1,5k+2,5k+3, 5k+4 (kは整数)のいずれかの形で表される。 [1] n=5k のとき [2] n=5k+1のとき n²+n+1=5(5k²+k)+1 n²+n+1=5(5k²+3k)+3 [3] n=5k+2のとき n²+n+1=5(5k²+5k+1)+2 [4] n=5k+3のとき n²+n+1=5(5k²+7k+2)+3 [5]=5+4のとき n²+n+1=5(5k²+9k+4)+1 それぞれの場合について, n2+n+1を5で割った余りは, 13231であり, n²+n+1は5で割り切れない。 練習 ② 117 (1) nーは9の倍数である。 nは整数とする。次のことを証明せよ。 3k-1,3k, 3k+1 と表し てもよい。 この場合, 3k+1と3k-1をまとめて 3k±1 と書き 330 AM=(1+AS)(1+) とき,余りが3になることはない。 n¹+2n²=n²(n²+2) =(3k±1)^{(3k±1)^+2} =(3k±1)^(9k²±6k+3) =3(3k+1)^(3k²±2k+1) (複号同順) として, 3× (整数)の形にな ることを示すこともできる。 すべて3×(整数)の形。 5k-2, 5k-1, 5k, 5k+1, 5k+2 と表してもよい。 (検討) 左の解答のように, 整数を余 りで分類する方法は,剰余類 の考えによるものである (演 習例題 123 参照)。 [(1) 京都〕 p.491 EX82 487 Auto 4章 18 整数の割り算と商および余り ) n し 14

解決済み 回答数: 1
数学 高校生

117.1 なぜ整数全体を3k,3k+1,3k+2に分けて考えよう と思うのですか? また、文頭ですが「全ての整数n」でなくて「全ての整数」と書いても良いですか?

このとき, 事項 1,3 は, (2) 2着目 に等しい 計算は不可能。 から始める りの性質を た余りは であるから、 余りは った余り1 7で割っ を7で 余りは 4 た余りは 伺った余り たりは 5 に余りは た余り りは 4 このと 基本 例題 117 余りによる整数の分類 nは整数とする。次のことを証明せよ。 ((1) + ²は3の倍数である。 mk, mk+1, mk+2, > すべての整数は,正の整数mを用いて,次のいずれかの形で表される。 ( k は整数) (2) n²+n+1は5で割り切れない。 p.485 基本事項 [②2] , mk+(m-1) mで割った余りが 0, 1,2m-1 CHART 整数の分類 練習 そして、このmの値は,問題に応じて決める。 (1) 「3の倍数である」=「3で割り切れる」であるから、3で割ったときの余りを考える。 したがって,整数全体を, 3k, 3k+1,3k+2に分けて考える。 解答 (1) すべての整数nは, 3k, 3k+1, 3k+2 (kは整数) のいず れかの形で表される。 n+2n²=n²(n²+2) であるから [1] n=3kのとき n+2n²=9k²(9k²+2) (2)5で割った余りを考えるから,整数全体を,5k, 5k+1,5k+2,5k+3,5k+4に分 けて考える。 = 3.3k²(9k²+2) [2] n=3k+1のときn+2n²=(3k+1)^(9k²+6k+1+2) 余りで分類 mで割った余りは 0 1 2 ....., m-1 →mk, mk+1, mk+2, *****, mk+(m-1) 15 =3(3k+1)²(3k²+2k+1) [3] n=3k+2のときx+2n²=(3k+2)^(9k²+12k+4+2) =3(3k+2)² (3k²+4k+2) I (2) すべての整数nは,5k, 5k+1, 5k+2,5k+3,5k+4 よって、+2²は3の倍数である。 (は整数)のいずれかの形で表される。 [1] n=5kのとき [2] n=5k+1のとき [3] n=5k+2のとき [4] [(1) 共立薬大, (2) 学習院大] n²+n+1=5(5k²+k)+1 n²+n+1=5(5k²+3k)+3 n²+n+1=5(5k² +5k+1)+2 n²+n+1=5(5k²+7k+2)+3 n=5k+3のとき [5]=5+4のとき n²+n+1=5(5k² +9k+4)+1 13 23 1 であり, n²+n+1は5で割り切れない。 それぞれの場合について,n²+n+1を5で割った余りは, 重要 119,120 nは整数とする。次のことを証明せよ。 の倍数である。 が3になることはない。 ********* 3k-1, 3k,3k+1 と表し てもよい。 この場合, 3k+1と3k-1をまとめて 3k±1と書き NO n+2n²=n²(n²+2) =(3k±1)'{(3k±1)^+2} =(3k±1)^(9k²±6k+3) =3(3k±1)^(3k²±2k+1) (複号同順) として, 3× (整数)の形にな ることを示すこともできる。 すべて3×(整数)の形。 5k-2, 5k-1, 5k, 5k+1, 5k+2 と表してもよい。 |Vs (11-37]N- 検討 左の解答のように, 整数を余 りで分類する方法は、剰余類 の考えによるものである (演 習例題 123 参照)。 [(1) 京都大〕 ( p.491 EX82 487 4章 18 整数の割り算と商および余り

解決済み 回答数: 1
数学 高校生

波線部のt=の式のところがなぜそうなるのかがわかりません。√2xはどこからきたのでしょうか? また、右図の意味もいまいちよくわかりません。全体の長さは√2xではなく2√2なのではないのですか?

00000 重要 例題 280 直線y=xの周りの回転体の体積 不等式 x-x≦y≦x で表される座標平面上の領域を,直線y=xの周りに1回転 A して得られる回転体の体積Vを求めよ。 [学習院大 ] 基本 272 指針▷ これまではx軸またはy軸の周りの回転体の体積を扱ってきたが,この例題では直線 y=xの周りの回転体である。 したがって,回転体の断面積や積分変数は回転軸(直線y=x) に対応して考えることに 体積 断面積をつかむ の方針 なる。 そこで,解答の上側の図のように放物線上の点Pから直線y=xに垂線PQを引いて、 PQ=h, 0Q=t とし,積分変数をt(0≦t≦2√2) とした定積分を考える。 このとき, 断面は線分PQ を半径とする円になるから, その面積は πh² 解答 題意の領域は、右図の赤く塗った部分 である。 放物線y=x²-x 上の点 P(x, x2-x) (0≦x≦2) から直線y=x に垂線PQを引き, PQ=h, OQ=t (0≦t≦2√2) とする。 このとき h=x-(x2-x)_2x-x2 √2 t=√2x-h=√2x-²x=2x² = √2 ゆえに dt=√2xdx tとxの対応は表のようになるから 2 コ V=x√²h²dt =T √2 2 (2x-x2) 2 √2xdx π = √2 S² (4x² - 4x² + x³) dx π π 6 12 *√/₂2 [× ¹ — ²/² x ² + x ² ] ² = √2-16-8√/2 15 15 π YA y=x2-xy=x 2 2√2 √2 x O he 45° 全体の長さ 1 2√2LF? P(x, x2-x) 2 t x 0 y=x x (x,x) 1 hx-(x²-x) P(x,x2-x) 02√2 2 (*) hは,直線y=xとx軸 の正の向きとのなす角が45° であることに注目して求めた。 なお,以下の点と直線の距離 の公式を利用してもよい。 点 (xo,yo) から直線 lax+by+c=0 に引いた垂線 の長さは ax+by+cl √a²+b² 上から2番目の図参照。 htはxの式になるから, 体積Vの計算(tでの定積 分) を, 置換積分法により xでの定積分にもち込む。 (検討) 放物線y=x2-xについて, y'=2x-1からx=0のとき y'=-1 よって、原点における接線は, 直線y=x と垂直。 1-03- 1S

回答募集中 回答数: 0