学年

教科

質問の種類

数学 高校生

面積を求める際のこのようなグラフは 極値やX軸との交点など求めてからグラフを書きますか??

338 00000 基本 211 基本例題 215 3次関数のグラフと面積 関数 y=2p-s-2x+1のグラフとx軸で囲まれた部分の面積を求めよ。 CHART & SOLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 3次関数のグラフと面積の問題でも、方針は2次関数の場合と変わらない。 3次関数のグラフとx軸の交点のx座標を求めて、 積分区間を決める。 →交点のx座標は 2.x-x-2x+1=0 の解。 inf面積を求めるために解答にグラフをかくときは, 曲線とx軸との上下関係と、交点の 座標がわかる程度でよいから、微分して増減を調べる必要はない。 よって ② 上下関係を調べる 曲線 y=2x^²-x^²-2x+1とx軸の交点のx座標は, 方程式 2x-x-2x+1=0 の解である。 f(x)=2x-x-2x+1 とすると f(1)=2-1-2+1=0 f(x)=(x-1)(2x2+x-1) =(x-1)(x+1)(2x-1) f(x) = 0 を解いて x=1, -1, -1/1 ゆえに, 曲線は右の図のようになるか ら 求める面積Sは s=S² (2x²− x² −2x + 1) dx +₁(−(2x²-x²–2x+1)} dx -1 - [£* - - * + x] - [ € - -ײ+x] x2- 3 y4 1 PRACTICE 215 8 次の曲線とx軸で囲まれた部分の面積を求めよ。 (1) y=x-5x2+6x 0 1 1 x 2 −²² (4- )*- } ( )*-( )*+¦ } -(² + 3-2)-(2-3) 71 48 因数定理 ◆組立除法により 2 -1 -2 ~x/d++) f(x)=x²(2x-1)-(2x-1) =(2x-1)(x-1) =(2x-1)(x+1)(x-1) 2 1-1 2 1 -1 0 あるいは 11 としてもよい。 ← 2つ目の定積分は,一を 外に出すと, 1つ目の定 積分と被積分関数が同 じ。 ← [F(x)] - [F(x)]* (2) y=2x3-5x2+x+? =F(c)-F(a){F(b)-F(c)} =2F(c)-F(a)-F(b) inf 定積分は分数計算など煩雑な計算が多い。 解答の(*)のようにF(x) に代入する値は まとめて,計算の工夫をする。 The The 7:16-07-2:12 に 1-12 051 曲線 y=-x+5x 上に点A(-1, -4) をとる。 日本 例題 216 曲線と接線で囲まれた部分の面積 el (1) 点Aにおける接線の方程式を求めよ。 (2) 曲線 y=-x°+5x と接線l で囲まれた部分の面積Sを求めよ。 CHART & SOLUTION (2) まず, 3次曲線と接線の共有点のx座標を求める。 f(x)-g(x)=a(x-a)(x-β)が成り立つ。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x)がx=αで接するとき, (ここで、Bはy=f(x) と y=g(x) の接点以外の共有点のx座標) (1) y'=-3x2+5 であるから, 接線l の方程式は y-(-4)={-3(-1)2+5}{x-(-1)} 11 すなわち y=2x-2 (②2) 曲線と接線lの共有点のx座標は、方程式 x+5x=2x-2 すなわち x-3x-2=0 の解である。 ゆえに (x+1)(x-2)=0 ゆえに,図から求める面積Sは よって x=-1,2 s=S_{(-x+5x)-(2x-2)}dx = f_(-x+3x+2)dx =-X+2x+2x27 3 4 y₁ el ORACTICE 216 曲線C:y=-x+4xとする。 部 x 基本 214215 INFORMATION 定積分の計算の工夫 s=f(x+3x+2)dxの計算はp.319 基本例題 203 と同様に,次のように計算す るとスムーズである。 s=S_(-x'+3x+2)dx=-(x+1)(x-2)dx (4) 339 曲線と接線ℓ は x = -1 で接する (重解をもつ) から, (x+1)^2を因数に もつ。 よって, x³-3x-2 =(x+1)^(x+α) とおけ,定数項を比較し てa=-2 =f(x+1)^{(x+1)-3}dx=-S°_^{(x+1)-3(x+1)}dx(x+1) の形をつくる --[(x + 1)²-(x + 1)² -- +27=4 = [(x+1)* 81 C上の点(13) における接線と曲線Cで囲まれ 7章 25 LEI 積

未解決 回答数: 1
数学 高校生

68. 記述でこの問題を解く場合について質問です。 解答のように表を書くのが個人的にピンとこない (実際試験でこの問題を解くときに表を書こうとは思わない)のですが、私が考えたような(写真2枚目)原始的に数直線で考える解法の場合、どのような記述文にすればいいでしょうか??

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, aは正の定数とする。 x3-(a+1)x²+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-a)(x-B)(x-x)≧0の形に変形したら、後は各因数 x-α, x-β, x-yの符号を調べ て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α, B, y に文字が含まれるときは,α, β, y の大小関係に注意する。 解答 不等式の左辺をα について整理すると (x-x2-2x)(x-x-2a≦0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 よって [1] 0<a<2のとき 右の表から, 解は x-1, a≦x≦2 [2] a=2のとき 不等式は (x+1)(x-2)2 ≤0 となり (x-2)2≧0であるから x-2=0 または x+1≧0 ゆえに, 解は x≦-1, x=2 [3] 2<αのとき 右の表から, 解は x≤-1, 2≤x≤a [1] ~ [3] から, 求める解は 0<a<2のとき x≦-1, a≦x≦2 a=2のとき x≦-1, x=2 2 <a のとき x≦-1, 2≦x≦a x x+1 x-a x-2 f(x) [1] f(x)=(x+1)(x-2)(x-a) -1 a 0 + + x x+1 x-2 - x-a f(x) - - *** - ◄x²-x²-2x - =x(x-x-2) =x(x+1)(x-2) - - 0 ... - 0 - - + -1 0 + [3] f(x)=(x+1)(x-2)(x-α) 0000 ... - - + 00 - 0 2 + 0 ... +|+|||| + + ++ - *** + + 2++00 1 0 0 I 0 + a + ++ + + +1:

回答募集中 回答数: 0
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

68. 表を書けばいいと思いつけばあとは簡単だと思うものの、表を書くことを閃く自信がないのですが高次不等式の問題は表を書いて解くのが一番いい方法ですか?

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, α は正の定数とする。 x-(a+1)x2+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-ar)(x-B)(x-x)≧0の形に変形したら、後は各因数x-α, x-px-yの符号を割 て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α,ß, yに文字が含まれるときは,α, B, yの大小関係に注意する。・・・・・・ 解答 不等式の左辺をα について整理すると (x²-x²-2x)-(x²-x-2) a ≤0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 0<a<2のときx-lax2+ a=2のとき x≦-1, x=2 2 <a のとき x≤-1, 2≤x≤a よって [1] 0<a<2 右の表から, 解は x≦-1, a≦x≦2 [2] a=2のとき x-a 不等式は (x+1)(x-2)=0となり,x-2 (x-2)^2≧0であるから f(x) x-2=0 または x+1≧0 (20)+(1-8) (D-1)+(ーー) α<β<yのとき (x-a)(x-β)(x-x)≧0の解は (x-a)(x-β) (x-x) ≧0の解は x x+1 a≤x≤ß, r≤x xha, Baxy [1] f(x)=(x+1)(x-2)(x-a) x (01 検討 3 次不等式を3次関数のグラフで考える 3次関数y=f(x)のグラフについては,第6章の微分法のところで 詳しく学習するが、グラフの概形は右の図のようになる。 このグラフから 4x²-x²-2x x-2 x-a f(x) =x(x-x-2) =x(x+1)(x-2) ゆえに, 解は x≤-1, x=2(x+1+0+(1+6)S-A+brys [3] 2<αのとき 右の表から,解は x-1,2≦x≦a [1]~[3] から 求める解は - 0 0 0 00000 ... a ... 2 …. + + + + + 0 + ++ [3] f(x)=(x+1)(x-2)(x-a) ... -1... 20 - 0 + 0 - + H + 28. 11.03 - 0 + 0 + 22 +0|0 + + FIT - B 1 a + + 0+ 0 + 2

回答募集中 回答数: 0