学年

教科

質問の種類

数学 高校生

【編入学】写真は,長岡技科大令和2年の数学の問題です.教えてほしい問題は,問題1です. (1)三次単位行列がうまくできません.  そもそもの単位行列の作り方と,解法を教えてください. (2)この問題は,(1)が解ければ自力で解けると思います.答え合わせの参考までに,解法... 続きを読む

2/2 問題用紙 (数学・応用数学) 1 201 問題1 A= 030 とおくとき、 下の問いに答えなさい。 10 1 (1) A の固有多項式 [tE-A を求めなさい。 ただし, Eを3次単位行列とする。 (2) A の固有値と固有ベクトルを求めなさい。 問題2 の関数y=g(x) に関する微分方程式 (*) g" + y = sing を考える。 u = u(x)=-ycosx+y' sinz, v=v(z)=ysinz+g cosx とおくとき, 下の問いに答えなさい。 (1) -ucosz+usinz=yが成り立つことを示しなさい。 (2) u v を関数として表しなさい。 (3) , をxの関数として表しなさい。 (4) 微分方程式 (*) の一般解を求めなさい。 問題3 ry 平面において, 領域 S, T を S x² + y² ≤1 T: 15x² + y² ≤ 4,0 ≤ y ≤ と定義する。 下の問いに答えなさい。 (1) 重積分 JJ (s' + g')dzdy を求めなさい。 (2) 重積分 If tan-1 / dudy を求めなさい 。 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、 選んだ箱から 復元抽出で几回繰り返し玉を取り出す。 下の問いに答えなさい。 (1) n=1のとき, 赤玉が取り出される確率を求めなさい。 (2)回全てで赤玉が取り出される確率pn を求めなさい。 (3) 回全てで赤玉が取り出される条件の下で+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1枚中の 1枚目一 長岡技術科学大学

回答募集中 回答数: 0
数学 高校生

数B 青チャート 複利計算と等比数列 下の写真の問題についてです。 指針の図の意味からわかりません。そもそも元金とは、と調べたものの理解できていない状況です。 等比数列のただの計算問題自体はできるため、この問題の福利計算についてとその指針の解説をしていただきたいです。 ... 続きを読む

基本例題 98 複利計算と等比数列 00000 毎年度初めにP円ずつ積み立てると, n年度末には元利合計はいくらになるか。 年利率をr, 1年ごとの複利で計算せよ。 ただし, r>0とする。 基本 96 指針▷ 「1年ごとの複利で計算する」 とは、1年ごとに利息を元金に繰り入れて利息を計算するこ とをいう。 各年度初めに積み立てるP円について, それぞれ別々に元利合計を計算し、 最 後に合計を求めることにする。 1年度末 2 年度末 (2) 年度末(n-1) 年度末 1 年度末 1 -P円積立 ・P円積立 t 図から, n 年度末までの合計は P(1+r)" + P(1+r)" ******. ・P円積立 等比数列の和 3年度末 解答 毎年度初めの元金は、1年ごとに利息がついて (1+r) 倍となる。 よって, n 年度末には, 1年度初めのP円は P(1+r)"円, 2年度初めのP円は P(1+r)"1円, したがって 求める元利合計 S は + P(1+r)+P(1+r)円 n年度初めのP円は P(1+r) 円 になる。 P(1+r){(1+r)^-1} (1+r) -1 Sn=P(1+r)"+P(1+r)"'+......+ P(1+r) P(1+r){(1+r)"-1} r ・P円積立 (円) P(1+r)* 円 P(1+r) 1円 P(1+r) *2 円 P(1+y)2 円 P(1+r) 円 円積立 右端を初項と考えると, S は初P(1+r), 公比1+y, 項数nの等比数列の和であ る。

回答募集中 回答数: 0