学年

教科

質問の種類

数学 高校生

FocusGoldSmart数2の問題です。 大問23の解き方がわかりません。 別解の方の解き方が乗っていない為わからないので誰か教えていただけませんか❔ 明日までに教えていただけると助かります❕

る. をそ して Focus a+b+c=1.abe=be+ca+ab とも1つは1に等しくなることを証明せよ。 考え方] 「 のうち少なくとも1つは1に等しい」とは、 a=1 または b=1 または e=1」 のことである。 実数α, βについて αβ=0 のとき、 α=0 または 8=0 であることを利用する。 a,b,cのうち、少なくとも1つは1に等しくなるとは, a=1 または b=1 または e=1 のことである. のとき, 実数a,b,cのうち少なく したがって (a-1)(b-1)(c-1)=0 ......① であることを示せばよい. ①の左辺を変形すると. (a-1)(b-1)(c-1) =(ab-a-b+1)(c-1) =abc-ab-ac+a-bc+b+c - 1 =abe-(bc+ca+ab)+(a+b+c)-1 =abc-abc+1-1=0 条件を利用して ① が成 り立つことを示す。 したがって, a+b+c=1.abc=bc+ca+ab のとき abc=bc+catah 等式 ① は成り立つから. ①より |a+b+c=1 α-1=0 または 6-1=0 またはc-1=0 よって, a=1 または b=1 またはc=1 となり. a b c のうち少なくとも1つは1に等しくなる. (別解) 実数 a b c が与えられた条件を満たすとき 実数 a b c を解とする3次方程式は. abc=bc+ca+ ab=k (k は実数) とおくと. x-x+kx-k=0 と表せる. これを変形すると, x(x-1)+k(x-1)=0 (x-1)(x²+k) = 0 よって, x=1 を解にもつので、 a.b.cのうち 少なくとも1つは1に等しくなる. 実数α. β.yについて aβy=0 ⇔α = 0 または 80 または y=0 3次方程式 ax2+bx+cx+d=0 の3つの解をα. B. yと すると. a+β+y=- b a a+by+ya=/c aβy=- d a (p.120 解説参照) 「少なくとも1つは☆に等しい」 は 「積) =0」 を示せ 注〉 (a-b)(b-c) (c-α)=0 となるとき, a b または b c またはca」 であるか ら、「a b c のうち少なくとも2つは等しくなる」 となる。

回答募集中 回答数: 0
数学 高校生

至急です。 数学II 不等式の証明 絶対値 です。 この4つの証明を、「証明の完成度」という観点で順位付けすると、どのような順序になりますか? 理由も教えて下さい。

ChatGPTに次のような質問をした。 次の不等式の証明を4種類考えてください。 ただし、証明として誤りを含むようにして下さい。 |a|+|bz|a+bl ChatGPTから得られた以下の4つの回答に対して「証明としての完成度」という観点で順位付けする ならば、どのような順序になるだろうか? 理由とともにあなたの考えを述べてください。 【誤った証明1】 -2 aとbが同じ符号の場合は at b も同じ符号であり、4|+|6|= |a+b|となります。 aとbが異な る符号の場合は、 |a| +16210+6が成り立ちます。 1 【誤った証明2】 -22 4 220 3 aとbの絶対値が等しい場合、 |a|+|b|= la +6 となります。 aとbの絶対値が異なる場合は、 xc b の絶対値は、 |a| とbのうち大きい方よりも小さくなるため、 + -1 2 : |a| + {0} は、la + b よりも大きくなるため、」|4|+|6|≧|a+bが成り立ちます。」 2.3 ↓ 絶対値が等しい場合を立証できてない。 1 【誤った証明3】 a,bを実数として、以下のように aとbを分解します。 a=lalsgn (a), b=16sgn(b) ここで、sgn(x)はxの符号を表す関数です。」 このとき、 |a| + 16 = |a + 6| となる場合は、 sgn(a) = sgn(b) のときです。一方、a+16≧a +6は、常に成り立ちます。」 したがって、 |a| + 16 ≧ a +6 が成り立ちます。」 【誤った証明4】 不等式 | 4|+bZl4+6 の両辺を2乗して、以下の式を得ます。 (a² + 2ab +6²)2(a + b)² 左辺を展開して、 ² +2|a||6 +62≧a²+2ab + 62 となります。 両辺から²62 を引いて、 2|a||b≧2abを得ます。 両辺を2で割って1664 を得ます。」 これらを合わせて、 || +16≧la +6 が成り立つことが示されました。

回答募集中 回答数: 0