学年

教科

質問の種類

数学 高校生

確率を求める問題なのですが点を固定して考えないで6^3としてしまいました。この方法ではなぜいけないのか教えて頂きたいです。よろしくお願い致します。

例題 13.2 4/19 半径1の円に内接する正六角形の頂点を A1, A2, ..., Ag とする.これらから, 無作為に選んだ3点(重複を許す)を頂点とする三角形の面積の期待値(平均値)を求 めよ. 2つ以上が一致するような3点が得られたときは,三角形の面積は0と 考える. 【解答】 正六角形A1A2 A3 A4 A5 A6 が内接する円の中心をO とする. A1 2=AAAA BAAAA A2 A6 88-,A,AA A3 A5 A4 無作為に選んだ1つの頂点をA,とし,固定して考える。 65 ※重複を許すので かくりの合計が1にならないことに 注意!! このとき、他の2頂点の選び方の総数は62=36(通り) あり,これ らは同様に確からしい。 車は9 そして、次の4つの場合が考えられる. (ア) 三角形 A1A2A6 と合同な三角形ができる. (イ) 三角形 A1 A3A5 と合同な三角形ができる. (ウ) 三角形A1 A2A4と合同な三角形ができる. (エ) A」 を含めて2点以上が一致する (ア)のとき,他の2頂点について, (A2, A3), (A3, A2), (A2, A6), (A6, A2), (A6, A5), (A5, As) の場合がある. よって, (ア)の確率)= 6 1 36 6 (イ)のとき,他の2頂点について, (A3, A5), (A5, As) の場合があ 対称性から1つの頂点は固定 して, 残り 2頂点の選び方を考 えればよい。 三角形の形で分類しておく. がこの検査 って ((イ)の確率)= 2 36 == 1 18 (ウ)のとき,他の2頂点について, (A2, As), (A1, A2), (Az, As),

未解決 回答数: 1
数学 高校生

イコールはなぜついてもよいのですか? 角B<90°、角C<90°からa≠c,a≠-cになる理由も知りたいです

基本 例題 87 座標を利用した証明 (2) △ABC の各辺の垂直二等分線は1点で交わることを証明せよ。 指針 p.123 基本例題 74と同じように、計算がらくになる工夫をする。 座標の工夫 ① 座標に0を多く含む [2] 対称に点をとる 基本 74 この例題では,各辺の垂直二等分線の方程式を利用するから、各辺の中点の座標に分 数が現れないように, A (2a,26),B(-2c, 0), C(2c, 0) と設定する。 なお、本間は三角形の外心の存在の座標を利用した証明にあたる。 点と直線の 解答 ∠Aを最大角としても一般性を失 わない。 このとき,∠B <90° ∠C <90° である。 y A(2a, 2b) 開菜 注意 間違った座標設定 例えば, A(0, b),B(c, 0), C(-c, 0) では,△ABC ただし 直線BC をx軸に,辺BCの垂直 二等分線をy軸にとり,△ABC の頂点の座標を次のようにおく。 (A(2a, 2b), B(-2c, 0), C(2c, 0) a≥0, b>0, c>0 NX は二等辺三角形で, 特別な M K C -2c OL 2cx 三角形しか表さない 座標を設定するときは, 一般性を失わないように しなければならない。 傾きは であるから,mo- =-1より <90°, ∠C <90° から, a≠c, aキーcである。 更に,辺BC, CA, ABの中点をそれぞれL, M, N とす 2 ると,L(0,0), M(a+c, b), N(a-c, b) と表される。 辺ABの垂直二等分線の傾きを とすると, 直線 AB の b atc b 証明に直線の方程式を使 用するから,(分母)=0 とならないように,この 条件を記している。 &(S) 0-2b -2c-2a b atc です a+c 点を m=- 交 28- よって,辺AB の垂直二等分線の方程式は 平行 の y-b=-- atc(x-a+c) 点N (a-c, b)を通り, 傾き - a+c の直線。 b すなわち atc a2+b2-c2 y=- -x+- b ①の交点である 辺 ACの垂直二等分線の方程式は,①でcの代わりに b -c とおいて a²+b²-c² a-c x+ b y=-b 2直線①②の交点をKとすると, ①②の切片はと もに a²+b²-c² であるから K(0, a² + b²-c²) b 点Kは, y 軸すなわち辺BC の垂直二等分線上にあるから, ◆辺ACの垂直二等分線 b a-c AC に垂直で, 点 M(a+c, b) を通るから ①でcの代わりに とおくと,その方程式 得られる。 は,傾き の直線 ② △ABCの各辺の垂直二等分線は1点で交わる。

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1