学年

教科

質問の種類

数学 高校生

至急!解説の方お願い致します🙇🏻‍♀️🙏🏻

〔3〕 下図のような三角形 ABC と, その辺上を移動する 3点P,Q, R がある。 点Pは,点Aから点Bまで毎秒1の速さで移動する。 点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは,点Cから点Aまで毎秒 27 の速さで移動する。 3点P. Q. R が同時に移動し始める。 (1) 三角形 ABCの面積は ア キ B (2) 移動し始めて1秒後, PQ の長さは コサ クケ 5 A 10 イウである。 エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後, 三角形 PQR の面積は -. 三角形 BPQ の面積は 数学 (推薦) 医療技術・福岡医療技術学部 シ チツ ソタ ナニ スセ |テト である。 である。 〔4〕 (1) 変量xの標準偏差が4, 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒 10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B C D E F G H I J 得点 3 4 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は, 4点であった。 この修正を行うと, 平均値は修正前から I |オ点減少する。 更に, 生徒Gに加えて, 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと, データの分散は生徒Gと生徒E の得点の修正前とくらべて カ 。ただし カ には⑩~②からいずれかを選び なさい。 ⑩ 増加する ① 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(x- キ ク )とする。 変量yの平均値は0. 分散は ケコ |サシとなる。

回答募集中 回答数: 0
数学 高校生

33の(2)でなぜ赤マークのところの答えになるのですか?最後に数直線で範囲を示して求める時、どのような数直線になるのか教えてください🙏もし数直線でなく別の求め方ならそれを教えて下さい。長い問題ですが宜しくお願い致します。

28.3次方程 の左辺を よって ゆえに、 よっ 解ど D D 4 8-12, 05 囲は するための条件は よって 2a8=122 =(apr ゆえに, Q2. B2 を2つの解とするxの2次方程式は x²-(144-2p)x+*p²=0 33. (1) f(x)=(x-a)²-a²+1 よって すべての実数x について, f(x) ≧0が成立 -a²+1200- a+1xa-1)≦O ゆえに 1≤a≤¹1 別解 f(x)=0の判別式Dについて よって (-a)²-1.1≤0 ゆえに, a + 1 a-1)≦0から (2) y=f(x)のグラフの軸は よって、常にf(x) >0を 満たす。 [1] < 0 のとき 軸x=aは 0≦x≦2の左 外にあるから, 0x2 におけるf(x) の最小値は f(0) = 1 [2] Oka2のとき 軸x=aは 0≦x≦2に含ま れるから 0≦x≦2におけ るf(x) の最小値は V f(a)=-a²+1 f(x) > 0 となるための条件 -a²+1>0 20 DO 直線x=a ・1 は すなわち -1<a<1 0≦a≦2であるから 0<a<1 -71≤a≤¹1 36 最小 x=a x=0x=2 ・最小 x=0x=2 3a>2のとき 軸x= a は 0≦x≦2の右外 にあるから, 0x2にお けるf(x) の最小値は (2)=22-24・2+1」 =5-4a f(x) > 0 となるための条件 は 540 すなわち- a<- 45-47 これはα>2を満たさない。 [1]~[3] から, 求めるαの値の範囲は (3) g(x)=x2-(24-1)x+ala-1} =(x - alix-a-1)] よって, g(x) ≧0 とすると ゆえに a-1≤x≤a y=f(x)のグラフの軸 x=aはa-1≦x≦a に含 まれるから, a-xa におけるf(x) の最小値は f(a)=-2+1 34. (1) x= した (2) 1> よって, f(x) > 0 とすると x=a=1 x=a 2 +10 すなわち -1 <a 大小 t 16 等号が成り t=√2 のときてある よって ゆ 16 x4 1592 x=0x=2 5 4 4 (x-a){x-(a-10 16 + +8 スニロ -最小 a<"1 =13 最小 である 11=115

回答募集中 回答数: 0