学年

教科

質問の種類

数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

(2)の解説で四角で囲ってるところがわからないので教えて欲しいです!!

l=r S == S [角 の表す一般消 ・α+360°xn(n= 整数) ↑ 198 第7章 数 列 基礎問 1293項間の漸化式 a₁=2, a₂=4, an+2=—an+1+2an (n ≥1) (a) がある. (1) An+2-QQn+1=β(an+1-Qam) をみたす2 数α, βを求めよ. (2) am を求めよ. 精講 an+2=pan+1+qan の型の漸化式の解き方は D 2次方程式 f=pt+g の解をα, β として,次の2つの場合があり ます。 (I) α β のとき an+2=(a+β)an+1-aßan より [an+2-aan+1=B(an+1-aan) ......① lan+2-βan+1=α(an+1βa) ...... ② ①より,数列{an+1-aan}は,初項a2-aa1, 公比ßの等比数列を表すので、 an+1-αam=β"-1(α-aa) ...... ①' 同様に,②より, an+1-βan=α"-1 (a2-Ba) ...... ②' ①-②より, (B-α)an=β"-1 (a2-aa)-α" (a2-Bar) 解答 (1) an+2=(a+B)an+1-aBan E antz = panti+qam 与えられた漸化式と係数を比較して, α+β=-1,aß=-2 の形にする。 (α,β)=(1, 2), (-2,1) (2)(a,β)=(1, -2)として an+2-an+1=-2(an+1-an) (119 an+1-an =bn とおくと bn+1=-26 また, b=a2-α=2 n≧2 のとき, n-1 み an=a₁+2(-2)-1 k=1 1-(-2)-1 =2+2・ 1-(-2) 階だから 123 ..bn=2(-2)-1 = =-(4-(-2)*-¹) これは, n=1のときも含む. (別解) (α,β)(2,1) として an+2+2an+1=an+1+2an ... an+1+2an=az+2a1 よって, an+1=-2an+8 ----2(a) a--- an 124 199 8 8 2 an+1 3 3 3 8 β-1 (a2-aa)-α"-1 (a2-Bai) したがって, an .. an= 3 3 (-2)-1 .. an=- = 1/2(4-(2)-1) β-a 注 実際には α=1(またはβ=1) の場合の出題が多く,その場合は階差数 列の性質を利用します. (本間がそうです) ポイント (II) α=β のとき an+1-aan=α"-1 (a2-aas) ...... ③ an+2=pan+1+gan 型は, 2次方程式 t2 = pt+αの2 解α,βを利用して, 等比数列に変形し2項間の漸化 式にもちこむ an+2-aan+1=α(an+1-aan) つまり、数列{an+1-aan} は, 初項 a2-aa, 公比αの等比数列. ③の両辺をα"+1でわって,a+ an a2-aa1 Qn+1 2 のとき)=2 a2-aa1 a² よって, an a=(n-1).az-da a" a Q2 an=(n-1)α-2a2-(n-2) α-α」 演習問題 129 α」=1, a2=2, an+2=3an+1-2an で表される数列{an}がある. (1) an+2 Qan+1= β(an+1 - Qan) をみたす2 数α β を求めよ. (2) annで表せ. 第7章

未解決 回答数: 0