学年

教科

質問の種類

数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

ヨウ化水素の物質量の変化の図示が分かりません

基本例題34 電離定数 0.030mol/Lの酢酸水溶液の酢酸の電離度α および水素イオン濃度を求めよ。ただし、 酢酸の電離定数を2.7×10mol/L,αは1に比べて非常に小さいものとする ■解答 188 【mol/L] の酢酸水溶液において、 酢酸の電離度がαのとき、電離す る酢酸分子は co[mol/L] なので, 生じる酢酸イオン、水素イオンも ca[mol/L] となる。 電離平衡時の 量的関係を調べ, 電離定数K の 式に代入してc, α と K の関係 式をつくり、 αを求める。 このと き、実際にαが1に比べて非常に 小さいことを確認する。 目安は α<0.05程度である。 はじめ 平衡時 0 ca (mo < 1 であり, 1-α=1 とみなされるので, 電離定数は。 ように表される。 CH₂COOH CH3COO- +H* a = √ したがって, C c(1-a) [CH3COO-] [H+] Lah Jo Ka= [CH3COOH] 2.7×10-5 0.030 [知識] グラフ 323. 平衡状態と平衡定数水素1.00mol とヨウ 素1.40molを100Lの容器に入れ、 ある温度に保 った。このときの水素の物質量の変化は、図のよ うであった。 (1) 平衡状態における水素, ヨウ素およびヨウ 化水素のモル濃度を求めよ。 (2) 減少するヨウ素および生成するヨウ化水素 の物質量の変化を図示せよ。 (3) この反応の平衡定数を求めよ。 HOKUESE [H+]=ca=0.030mol/L×0.030=9.0×10mol/L. $5 (1) 3 Tom T. &IH (8) IH A |基本|問題| 119 つ選べ。 (ア) N2O4 と NO2 の濃度の比は1:2である。 (イ) N2O4 と NO2 の圧力(分圧)の比は1:2である。 (ウ) N2O4 の濃度は一定となっている。 (エ) 正反応と逆反応の速さは等しい。 (オ) 正反応も逆反応もおこらず、反応が停止している。 2NO2 の反応 [知識 322. 平衡状態四酸化二窒素 N2O4 をある温度, 圧力に保つと, N2O4 がおこり,平衡状態に達した。 平衡状態に関する次の記述のうちから,正しいものを [mol] 2.0 物質量 ca 1.5 (ca)² c(1-a) =0.030 SCIEN 49 kieuốc (S)(ung Fossh — (R),H&+ (2);M (1) SUL (1) HOOSH+HOOT,HO (1) MOOOHO (SE 1.0 =ca² 0.5 0 324. 平衡の量的関係 一定温度で平衡状態 CHICOOH +c 酢酸 H この温度にお 酢酸1.00mc で平衡状態に達 時間 - 例題 F (1) (2) 325. 反応量と解 入れると、二酸 をP[Pa], 四 N2O4 (気) 平衡状態 平衡時⊂ この反 (1) (2) (3) [知識] 326. 条件変 よって,平 (1) 302 N2+ 2HI (4) 2SC (5) NH (2) (3) 327. 平 Im 2SO (1) SC の (2

回答募集中 回答数: 0
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0