学年

教科

質問の種類

数学 高校生

次の問題で青い線はどの様にして出しているのでしょうか?解説お願いします🙇‍♂️

思考プロセス t>0 とする。 放物線 C:y=x2 上の点P(t, t2) における法線を1とする。 法線と放物線 C で囲まれる部分の面積Sの最小値とそのときのtの値を 求めよ。 Thm.3(3次関数) ⑥ y = ax+b+c+d 6 法線・・・ 点P を通り, 点PにおけるCの接線に垂直な直線。 面積Sは 公式の利用 の構図 ⑨3次関数 11 《QAction 放物線と直線で囲む面積は,S(x-a)(x-B)dx=-1/2(B-α)を用いよ IとCの共有点のx座標 α, βを求める。 ⇒ α, β のうち1つは点Pのx座標であることに注意する。 解 y = 2x より 法線lの方程式は 例題 244 Thm, 2 接線と放物線) ④l, y=ax+bxtCl2 S = la (B-x)³ 例題 208 1 y-t² = =- -(x-t) 2t 1 よって y = -x+t² +⋅ 2t 2 法線と放物線Cの共有点のx 座標は = x+ -12- 2t -t- 2t <S(t)) P O t x I 1点P(t, f(t)) における 法線の方程式は | y − f(t) = − -(x- -t) 1 f'(t) 2+1/x-(1+1/2)=0より 2t (x-1){x+ (x−t) { x + (1 + 2/1 ) } = 0 2t IとCは点Pで交わるか この方程式は x = t を解にもつ 1 よって x=t, -t- 2t 244 例題ゆえに S= {(· 1 -x+ t² + x² dx 2t = - L 1 ( x 例題 68 t- − t) { x + ( t + 2 ) } d 1 3 2t x 3 = 1½ { t − (− 1 − 2)}² = 1 ½ (21+ 2+ ) ³ t 2t 2t t0 であるから, 相加平均と相乗平均の関係より s= 2t+ 2t 2t 3 M 5 = 1½ (2² + 1 ) = 1 - (2√2 · 117 ) = 1/3 2/2t⚫ 6 1 これは 2t = すなわちt= 2t のとき等号成立。 2 したがって, Sは t =1のとき 最小値 L(x-a)(x-B)dx — — -(ẞ-a)³ ReAction 例題 68 k 「X+ (X> 0) の最小 X 値は, (相加平均) ≧ (相乗 平均) を利用せよ」

解決済み 回答数: 1
数学 高校生

解説お願いします。数Cベクトルです。 (1)の問題で、参考書の方の解説は理解しているのですが、私の解答の間違いが分かりません。 どこが間違えているのか教えていただきたいです。 よろしくお願いします。

思考プロセス 例題 32 三角形の形状・心・心との内 次の等式が成り立つとき, △ABCはどのような形の三角形か。 (1) AB AC = |AB|2| . (2) AB・BC=BC・CA « ReAction 三角形の形状は、辺の長さの関係を調べよ IIB例題 77 ★★★☆ 目標の言い換え △ABCの形状は ? (UE) 75 (ア) A (イ) HLA 長さの等しい辺, 直角となる頂点を考える。 これまで ベクトルの場合 例 (ア) AB AC (二等辺三角形) |AB|=|AC| BOC (イ) BC2=AB2 + AC2 ABAC = 0 B CO nod (A=90°直角三角形) A (2) [左辺・・・ ∠B をはさむ2ベクトル ∠Bと∠Cについて対等 ... [右辺 ∠Cをはさむ2ベクトル > AB と AC の対等性を予想し,始点をAにそろえる。 B C& AO 解 (1) AB·AC = |AB|より 2 AB・AC-ABAB = 0 AB-AB-AB (80+70) AB・(AC-AB) = 0 A AO) よって ABBC = 0 AB = 0, BC ≠ 0 であるから B AB 1 BC 180+800 したがって, △ABC は ∠B=90°の直角三角形 80 AO (別解 + a+bto 単に「直角三角形」 だけ では不十分である。 与式は AB 0 であるから JAB||AC|cosA=|ABC- |AC|cosA= |ABO これが成り立つのは,∠B=90°のときであるから, △ABC は ∠B=90°の直角三角形 Aから IACIAO |AB| + B C |BC| = |CB| ≠ 0 より |BA | cosb1 = |CA|cosin (別解) 与式より BA・BC=CB・CA |BA||BC|cosb1 = |CB||CA | cosbz めに、

解決済み 回答数: 1
数学 高校生

次の問題で何故青いところは②に代入しようとするのでしょうか?①はダメなのでしょうか?どなたか解説お願いします🙇‍♂️

思考プロセス 次の連立方程式を解け。 (x+y=1 (1) lxy=-6 ... (2) fx2-5xy = 2 (3) l2xy-y=-1 ② Jx-xy-6y2=0 (2) lx-3y2-2y=8 2 Action》 連立方程式は, 1文字消去せよ |文字を減らす 連立方程式の基本的な解法の流れ 1文字消去 xとyの だけの方程式 連立方程式 x=(yの式) (*) (2),(3)は,①,② ともに2次式である。 (2) ①をxについての2次式とみると, 因数分解を 用いて解くことができる。 既知の問題に帰着 (3) ① x=(yの式) にして ② に代入すると, 式は 複雑になる。 「定数項が0ならば (2) の因数分解の方法に ← (*) はxについて解いた式と みることができる。 ② をy=(xの式) にしても 同様。 (イ) x=3y ... ④ のとき ④を②に代入すると 6y2-2y-8=0 より (3y)-3y2-2y=8 (3y-4)(y+ 1) = 0 4 ゆえに y=-1, 3 ④ に代入すると y=1のとき x=-8 y=4 y =1のとき (ア)(イ)より x=4 ly=-2, x=3(-1)=-3 x = 3.13=4 x=4 [x=-3 4 y=-1, y= 3 (3) ①+②×2より x-5xy+2(2xy-y2)=0 よって x2-xy-2y2 = 0 (x-2y) (x+y) = 0 ゆ x = -y または x=2y (ア) x-y... ③ のとき ③②に代入すると -2y2 y² = より y= + 3 V3 |13 3 =± 3 ... 3 帰着できるかもしれない」 と考える。 (1) ① より y=1-x ③②に代入すると x-x-6=0 より よって x=2,3 ① に代入すると x(1-x)=-6 (x-3)(x+2) = 0 x=2のとき y=1-(-2)=3 x=3のとき したがって y=1-3=-2 [x=-2 x=3 Lv=3, ls=-2 lyを消去し, xだけの2 次方程式をつくる。 1.2 = ③に代入すると /3 3 y = のとき x=- 3 /3 /3 y=- のとき x= 3 3 (イ) x=2y ... ④ のとき ④を② に代入すると 4y-y=-1 3y2 = -1 となり, これを満たす実数y は存在しない。 (2) ① の左辺を因数分解すると (x+2y) (x-3y) = 0 よって x = -2y または x = 3y 右辺が0である①の左 辺が因数分解できるこ とに着目し,xyの式 で表す。(xを消去し /3 x= x 3 3 (ア)(イ)より 3 3 y= 3 3

解決済み 回答数: 1
数学 高校生

青の四角で囲んだ部分はどこから来たのですか?? 1つ上の式に√2/2をかけるところまでは理解出来たのですが、青四角の部分は何が起こったのかどなたかわかる方教えてください!!🙇‍♀️

DO 基本 例題 137 2次同次式の最大・最小 000 Yami sincos0 +2con" (002)の最大値と最小値を求めよ。 CHART I sin と cos & SOLUTION の2次式角を20 に直して合成 1-cos 20 2 sin20= L半角の公式 基本135 MOITUJO ZA TRAHD sin20 sinOcos0= 2 cos20= 1+cos 20 2 L2倍角の公式 半角の公式 これらの公式を用いると, sino, costの2次の同次式 (どの項も次数が同じである式) は 20の三角関数で表される。(は) 更に、三角関数の合成を使って, = psin (20+α) +α の形に変形し, sin (20+α) のとり うる値の範囲を求める。 08000nia S-0 200+(nie S-1aiz L の質は一般から f(0)=sin'0+sinOcos0+2cos2d 1-cos 20 sin 20 == 2 ・+2・・ 1+ cos 20 8=24 mie sind, cose の2次の同 次式。 0 _1 2 (は2とな 3 -1/2 (sin20+cos20) + 22 2 sin (20+4)+3 (1,1) 1H OS nie-08 π 02054 sin 20, cos 20で表す。 sin 20 と cos 20 の和 合成 4章 17 加法定理 π 1 x 0≤0≤ であるから 2 30 YA S ≤20+ 4 4 4 π 5 の糖 範囲に共 π かめられる。 よって1ssin(20+4) 1 14 -1 1x AX 3+√2 ゆえに 1≤f(0)≤ この 2 ? a+r したがって,f(8) は 各辺にを掛けて √2 I> sin(20+4) √2 2 を開く! くには? 20+ π TC πC 4 2 すなわち = で最大値 120 8 π = 4 5 20+ 2 すなわち =1で最小値1をとる。 4 この各辺に22を加える。 ・利用して、右辺をsio 3+√2 2

解決済み 回答数: 1