学年

教科

質問の種類

数学 高校生

2番です!これって分母のlogを引いたらダメなんですか??

9/1 2次関数, 三角関数, 指数, 対数を中心にして 37 対数の大小比較 (対数不等式) [1] a>0, a≠1 のとき,不等式loga(x+2)≧loga (3x+16) を解け. [2] 不等式 log7x-3logx (7x)≦-1 を満たす実数xの範囲を求めよ. 解答 (富山大/学習院大) ここ とな t> [2] [1] loga(x+2) loga (3x+16) ...① 真数は正であるから, x+2>0 x> より 3x+160 16 .. x>-2 ...② x>_ 3 > ①の右辺を変形すると, 10ga (3x+16)= loga (3x+16) loga (3x+16) loga a² 2 となるから、 ①より, loga(x+2)_oga(x+16) 底をαでそろえた 2 21oga(x+2)≧loga (3x+16) loga(x+2)2≧loga (3x+16) 底αの値によって,真数を比較したと きの不等号の向きが変化するので、場 ...3 合分けをして考える (ア) a>1のとき,③より, (イ) 0<a<1のとき,③より, 底αが0<a<1の場合は, logaplogag p≤q (x+2)2≧3x+16 (x+2)2≦x+16 x²+x-12≧0 x²+x-12≦0 (x+4)(x-3)≧0 (x+4)(x-3)≦0 x-4, 3≤x -4≤x≤3 であり、不等号の向きに 注意する ②も考えると, ②も考えると, 3≦x -2<x≤3 (ア)(イ)より,不等式① が成り立つxの範囲は、 3≤x (α>1のとき) 0205& 2<x≦3 (0<a<1のとき log7x-310gx (7) ≦1 ・・・4 真数と底の条件から,x>0, x≠1である. 底は1を除く正の数である ④の左辺において log (7x)=10g7(7x)10g77+log7x=1+log7x log7x log7x log7x となるから ④を整理すると, log7x-3. 1+log7x log7x +1≦0 ・・・(5) 底を7でそろえた

解決済み 回答数: 1
数学 高校生

PR29の3題について質問です。 なぜ置き換えが必要なのですか? どうしたらaよりbのほうが大きいとか大小関係がわかるんですか? 回答お願いします🙇

PR 不等式 la + bls|a|+|6| を利用して、 次の不等式を証明せよ。 ② 29 (1) a-bl≦|a|+|6| (3) la+b+cls|a|+|0|+|c| 第1章 式と証明 21 (2) la-clsla-6|+|b-c| [info] la + b/sla|+161 の証明は、基本例題 29 (1) を参照。 (1)|a+b|≦|a|+|6| のbを-6におき換えて la-bl≦|a|+|-6| ここで |-6|=|6| よって |a-b|≦|a|+|6| (2)|a+bl≦|a|+|6| の a を a-b, b を b-c におき換えて よって | (a-b)+(b-c)|≦la-6|+|b-c| la-cl≦la-b|+|b-c| (3)|a+b|≦|a|+|6| の a を a + b, bをcにおき換えて [(a+b)+cl≦la+6|+|c| また, la +6≦|a|+|6| から ①② から ...... ① la+6|+|c|≦|a|+|6|+|c| ...... ② la+b+cl≦|a|+|6|+|c| 両辺に |c|を加える A≤B, B≤C ⇒ASC PR 30 9 (1) 4a+≥12 a (1) 4a>0, a 9 9 係により a, b, c, d は正の数とする。 次の不等式が成り立つことを証明せよ。 また、 等号が成り立つの どのようなときか。 9 (2) (6+) (+) 24 ->0であるから,相加平均と相乗平均の大小関 4a+22/4a-2-2-6-12 9 よって 4a+-≧12 a 9 等号が成り立つのは4a= すなわち a=2のとき。 a 9 4a²-12a+9 9 +4a= 5 a² a α> 0 であるから 別解 4a+ i-12= a a (2a-3)2 a (2a-3)≥0 a>0 (2a-3)≧0 より よって 4a+ a+21 ≥12 a a 等号が成り立つのは、2α-30 すなわち α 32 のとき。 (実数20

解決済み 回答数: 1