学年

教科

質問の種類

数学 高校生

75.1 証明の記述に問題ないですか?

416 00000 基本例題 75 三角形の面積比 (1) ABCの辺AB, AC 上に、それぞれ頂点と異なる点D,Eをとるとき、 △ADE AD AE が成り立つことを証明せよ。 △ABC AB AC (2) △ABCの辺BC, CA, AB を 3:2に内分する点をそれぞれD,E,Fとす る。 △ABCと△DEF の面積の比を求めよ。 基本69 指針▷三角形の面積比は, p.410で考えたように等しいもの(高さか底辺)に注目する。 (1) まず, 補助線 CD を引く。 △ADEと△ADC では何が等しいか。 三角形の面積比 等高なら底辺の比, 等底なら高さの比 (2)(1) を利用。△DEF は, △ABCから3つの三角形を除いたものと考える。 2147 解答 (1)2点CDを結ぶ。 △ADEと△ADC は, 底辺をそれぞれ線分 AE, 線分 AC と AADE AE みると,高さが等しいから ① AADC AC △ADCと△ABC は, 底辺をそれぞれ線分 AD, 線分AB と 101=M8 みると,高さが等しいから (2) $080+ MAS = 3 ① ② の辺々を掛けると したがって (21)により AADE AADC △ADC △ABC △ADC AD AABC AB △ADE AD AE △ABC AB AC AAFE AF AE △ABC AB AC ここで 両辺を △ABC で割ると ADEF =1- △ABC . ABDF BD BF △ABC BC BA =1- AEAD 6 6 25 ACAD(*8+"CA)S="MA 37/557/5057/5 32 2|52|52|5 32 AAFE △ABC △ABC 25 25 ゆえに △ABC △DEF = 25:7 ACED CE CD △ABC CA CB ADEF=AABC-AAFE-ABDF-ACED 6 7 25 IP (A))"A+HA 6+$ 25 = 6 EST+CAA-AL/ 25 ABDF ACED 6 25 B D B 2 3 3 E T(98+9A)8=5A+EA D20 AABCHA MAJUSCUL △ABCの辺BC を 2:3に内分する点をDとし、 辺CA を 1:4に内分する点を 練習 2 75 E とする。 また, 辺ABの中点をFとする。 △DEF の面積が14のとき, の面積を求めよ。 (180+0A8 A+S p.418 EX47 △ABC まと 三角 1 B [別ア: ローラ こ (三角 (1) 証 BOF 17 & 証明

回答募集中 回答数: 0
数学 高校生

数3積分の問題です。 最後の面積を求める計算で∫Xではなくてyを入れる理由がわからないです。面積を求める問題ではどのように判断してyかxを置くか決めているのでしょうか。

媒介変数表示の曲線と面積(1) 基本例題 244 重要 175 重要 245 00000 (osts 7 ) と表される曲線とx軸で [福岡大〕 FEOME いちよしにな 指針 媒介変数t を消去してy=F(x) の形に表すこともできるが, 計算は面倒になる。 そこでx=f(t), y=g(t) のまま, 面積Sを 置換積分法で求める。 1 曲線とx軸の交点のx座標 (v=0となるもの値)を求める。 媒介変数tによって, x=4cost, y = sin2t 囲まれた部分の面積Sを求めよ。 解答 ②tの変化に伴う、xの値の変化やりの符号を調べる。 ③3面積を定積分で表す。 計算の際は、次の置換積分法を用いる。 s=Sydx=Sg(t)f(t)dta=f(a), b=f(B) π RECEP 0≤t≤ ① の範囲でy=0 となるtの値は また、①の範囲においては、 常に y ≧0である。 dx x=4costから -4sint, dx=-4 sintdt dt y=sin2t から dy dt =2cos2t であり、 == π とすると dt ゆえに,右のような表が得 られる(は減少は増 加を表す)。 よってS=Sydx/ =S₁sin2t· (–4 2 t dx dt 2t.(-4sint)dt =45** sin2t sintdt =8f5d sin' tcostdt 8 -* - - in²":1² - 3 -sin = xは単調に変化 dy 0 4 + 0 ... + K y₁ π 2√2 0 1 72 t=0, 7 2√2 π 2 π 2 (t=0) 4 xtの対応は次のようにな る。 t 0 → π った 2 x 4 → 0 8章 She sin' t(sint)'dt 38 面 積 また、Ostsではy≧0で あるから, 曲線はx軸の上側 のがある。 面積の計算では、積分区間・ 上下関係がわかればよいの だから、左の解答のように, 増減表や概形をかかなくても 面積を求めることはできる。 しかし、概形を調べないと面 積が求められない問題もある ので,そのときは左のように して調べなければならない。 12 ル

解決済み 回答数: 1