学年

質問の種類

数学 高校生

(1)は二次関数のグラフで(2)が三角関数のグラフなのはなぜですか?

0000 a の値の範 例題 重要 例 149 三角方程式の解の個数 は定数とする。 0 に関する方程式 sin0-cos0+a=0 について, 次の問いに 答えよ。 ただし, 002 とする。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 (1) この方程式が解をもつためのαの条件を求めよ。 与式は つの解をも 20をαにつ x-2) 泉 y=xと 2)の共有 囲にある x²+x-1-a=0 (11) 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, 指針 cost=xとおいて, 方程式を整理すると 解答 重要 148 239 定数αの入った方程式 f(x) =αの形に直してから処理に従い, 定数α を右辺に移項した x2+x-1=αの形で扱うと, 関数 y=x²+x-1-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 →直線 y=α を平行移動して, グラフとの共有点を調べる。 なお (2) では x=-1, 1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は2個あることに注意する。 cosl=x とおくと,0≦0<2πから-1≦x≦10 この解法の特長は、放物線を 方程式は したがって (1-x2)-x+a=0 x2+x-1=a 固定して, 考えることができ るところにある。 4 4章 三角関数の応用 照。 f(x)=x2+x-1とすると f(x) = (x+1)² - 15/05 グラフをかくため基本形に。 4 5 である。 よって, 右の図から - ≦a≦1 4 1 I て,求める解の個数は次のようになる。 1x.202=(x (1)求める条件は,-1≦x≦1の範囲で,y=f(x) のグラフと直線 y=α が共有点をもつ条件と同じ (2)y=f(x) のグラフと直線y=αの共有点を考え y=f(x) y [6]-10y=a 1 [5] 1 2 1x + [4]/ [1] a<21<a のとき 共有点はないから 0個 [3]+ 5 [2] 4 [2] α=-- のとき,x= から 2個 STD Sea XA [6]+ - 5 [3] <a<1のとき -1<x<-12-1/12<x<0の範囲に共有点 はそれぞれ1個ずつあるから 4個 [4] a=−1 のとき,x=-1, 0 から 3個 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 [6]a=1のとき,x=1から1個 [5] 0 π 12 0 [4]+ [2]- [3] [4] -1 1 2

解決済み 回答数: 1
数学 高校生

解答と過程が違うのですが、答えだけは合ってました。 自分の解答ではダメでしょうか

12 媒介変数表示された曲線 x=sint xy 平面上において,媒介変数 t (OSIS 2/27)によって オ) によって {sin と表される曲線をCとする。 ly=1-cos3t (1) C上の点でx座標が最大になる点Pとy座標が最大になる点 Qの座標をそれぞれ求めよ. (2) Cとx軸で囲まれた図形の面積を求めよ. (熊本大医/一部省略) Y C:y=H(x) t=1 媒介変数のまま積分 曲線C上の点が (x, y) = (f(t), g(t)) と媒介変数表 示されていて,0≦t≦1での概形が右図のようであるとする.Cをy=H(x)と表せ ば,網目部の面積はSH (x) dz であるが,H (z)が具体的に書けない,あるいは積 分計算ができないときは, x=f(t) と置換しての積分にする. 定め方から H(f(t))=g(t)dx 0 ax |t=0 dt =f(t)なので,面積はSog(t)f'(t) dt と書ける。 例題では,ェはtに関して単調 ではないので,単調な区間に分けて立式しなければならないが, 計算 (tで積分する式) は1つにまとめて行う ことができる。 ( 興課) 解答 xyの増減とCの概形は右 のようになる. gol-1 (1) P(1,1) (Q Q(√332) π π t 0 : 8 0 33 7√3/27 21 |2|3|3 YA π 2 √3/2 C gol y 0 7 2 1 0 1 P(t=) π π (2) Costs の部分が,y=y(r), ts/ πの部分が √3 2 (t=0) 2 y=y2(x) と表されるとすると, 求める面積は =)(1)=( 0x gol is 0-2 2 ・・① =(x) gal ( dx -=cost より dt xが単調な区間に分け, 一度,関 数型の式を書く. (S π ← S² 41(x) - (土) dx -dt などとなる. dt π 2 π + としてまとめる. +10 積 和の公式 登録 cos A cos B sint と置換すると, y1(x)=y2(x)=1-cos3t, π π 2 ①= (1-cos3t) costdt-J (1-cos3t) costdt =J 2 3 (cost-cos3tcost)dt = { cost- (cos 4t + cos 2t)}dt 2 2 -[sint-1-sin 41-1 sin2+ |* √3 2 8 4t-- √3 1 4. sin2+(D) 9 1 √3 4 2 16 11 8 2 -√3 (E) {cos (A+B)+cos (A-B)}

解決済み 回答数: 1
数学 高校生

黄色いところは何をやっているのか分かりません。。(;;)教えて欲しいです!

重要 例題 160 媒介変数表示の曲線と面積(2) 媒介変数によって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 YA x 基本156 CHART & SOLUTION 基本例題156では,tの変化に伴ってxは常に増加したが, この問題ではの変化が単調でないところがある。 y Y2 右の図のように, t=0 のときの点を A, x座標が最大とな る点を B(t=to で x 座標が最大になるとする), t=πのと きの点をCとする。 S B A -3 O 1₁ x Xo この問題では点Bを境目としてxが増加から減少に変わり, 軸方向について見たときに曲線が往復する区間がある。 したがって, 曲線AB を y, 曲線 BC を y2 とすると,求め る面積Sは t=π t=0 ●t=to 曲線が往復 している区間 s=Sydx-Sy yidx と表される。 よって、xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式を立てる。 また,定積分の計算は、置換積分法によりxの積分からtの積分に直して計算するとよい。 解答 図から, 0≦t≦↑ では常に y≥0 また y=2sint-sin2t=2sint-2sintcost =2sint(1-costするど よって, y=0 とすると sint=0 または cost=1 24 0≤t≤ x 5 t=0,0-(D)\\ 次に, x=2cost-cos 2t から 7 dx =-2sint+2sin2t dt xh (bala-nia) Daia inf. 0≤ts D sint≧0, cost ≦1 から y=2sint(1-cost)≧0 としても,y≧0 がわかる。 455-25 =-2sint+2(2sintcost)_(n)\ =2sint(2cost-1) 0<t<πにおいて dx dt -= 0 とすると, sint>0 で あるから π t 0 π |3| cost= 201 ゆえに dx t= J3 dt + よって、xの値の増減は右の表のようになる。 x 1 →>>> 032 ↑ P -3

解決済み 回答数: 1
1/33