学年

教科

質問の種類

数学 高校生

印をつけたところの意味がよくわかりません。 どういう考えでこういう式になっているのですか。

Think 例題 236 2 円の位置関係(2) △右の図のように、半径50円 0 と半径1の円O2 が あり、中心間の距離は 012=2 である。 円Cが円Oに内接し, 円 02 に外接しながら動くと 円Cの半径rのとり得る値の範囲を求めよ. き 解答 円Cと円Oの接点と中心C, O. は一直線上にあり, 円 Co- 円Oの接点と中心 C, O2 も一直線上にある . 818-84 これらから, CO15-, CO2=1+r 加えて, 3点C, O1, O2 の位置関 係は, 3点C, O1, O2 が三角形を作 るか,または3点C, O1, O2 が一 直線上に並ぶかである. このことを式で表すと, 練習 236 *** [考え方 題意を満たすように円C を動かしてみると, 円Cの半径が最も大きいときと、最も小さ いときの,3つの円の中心の位置関係が見えてくる. 002=2 ① を代入すると, |CO1-CO2 ≤0102≤CO1+CO₂ RESERVA Focus 円 02 に外接しながら動くとき,04円の半径が最大 円Cが円に内接し, |(5-r)-(1+r) | ≤2≤(5-r)+(1+r) よって, 14-2r|≤2≤6 すなわち, 4-2r|≦2 より, -2≦4-2r≦2 この不等式を解くと, -2≦4-2r から, r≤3 4-2r≦2 から, 1≦r よって, 円Cの半径rのとり得る値の範囲は, 1≤r≤3 201 HO='AA 2億円の性質 475 08 画 円の位置関係は,中心の位置関係に注目する **** 右の図のように、半径160円 0, 半径60円 A, B, 半径 の円Cがある. 3円 A,B,Cは円に内接し, A と B, B と C, C とAは 外接しているとき,の値を求めよ. •C 01 02 円Cの半径が最小 800 1 C 012 +80- 83点 C, O1, O2 につ HO='8 いて、 O2 460 H COL+CO2O102, CO2+O1O2≧CO1, OOCOCO2 |CO-CO2| ≤0102≤CO₁+CO₂ (p.425 参照) .0 •C 第8章

回答募集中 回答数: 0
数学 高校生

242.1 t≠0と書かないといけない理由はなぜなのでしょうか??

370 基本例題 242 放物線と円が囲む面積 R 5 R(0, 4 |放物線:y=x2 と点 R 0, を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 PARA (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面 SSEROTOPROT を求めよ。 [類 西南学院大]基本20 指針 (1) 円と放物線が接する条件を p.156 重要例題102 では 接点重解で考えた ここでは微分法を利用して,次のように考えてみよう。 +88=8+₁ LとCが点P で接する点P で接線l を共有するRPℓ (2) 円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを利 するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/10 - b-d 8+0 (6-8)(6+8)6 解答 (1)y=x2 から y'=2x 株果 2 LとCの接点Pのx座標をt (t≠0) とし, この点での共通 の接線を l とすると, lの傾きは 2t 5 t²_. 点 R と点 P(t, t2) を通る直線の傾きは4412-5⑩- 380 < $100 t-0 4t ゆえに = 3(-x) (0) RP⊥l から 4t²-5 4t 2t. √√3 t=± よって b/(0-8) (2) 右図のように,接点A,Bと点Cを定めると, = =-1 2 ゆえに、接点の座標は 2 練習 3242 5 3 RC:AC=1:13 から ∠ORA=1/5, RA=22-2)=1 4 L と直線 AB で囲まれた部分の面積をSとすると一 S=S+RBA- ( 扇形RBA) -S²(³-x²) dx + 1 · 1²³.sin ²23 x - 1.rze 3 4 2 RA=2• 放物線:y=1/12 x 2 上に √√3 4 4 --√²(x + √3)(x-√3) dx + √3_32-533 == 2 2 π 3 24 -3√3 4 √√3 3√3 3 -8) +/-(6- 8)-(-B SIA T ------- A 3+ B 3- O B A 1 R f [6] 2 [0] √√3 y (y=r /102/01

未解決 回答数: 1