学年

教科

質問の種類

数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0
数学 高校生

イがわかりません。 図の意味もいまいち分かってません。 どなたかすみませんがよろしくお願いします🙇‍♀️

10 難易度 SELECT SELECT 目標解答時間 15分 90 60 図のように,座標平面のx軸上に AC=CE=4 となる点 A, C, E をとる。 △ABC と ACDE はいずれも∠B=∠D=90°の直角二等辺三角形であり,この二つの三角形を合わせた図形を Kと する。また,一辺の長さが2の正方形FGHI を辺GH がx軸上にあるように左右に動かす。 すべての 図形はx軸に関して同じ側にあり、すべての図形は,周および内部を考えるものとする。 B D F ←→ I A -4- C E G2 H x 図形 K と正方形 FGHI に重なる部分があるとき, 重なる部分の図形の形状として正しくないもの は ア である。 ア の解答群 一つの直角二等辺三角形 ① 二つの直角二等辺三角形 ②一つの台形 ③一つの五角形 点 a を原点にとり,実数t を用いて点G( b, 0) とし,図形 K と正方形 FGHI が重なる部 分の面積を f(t) とすると,f(t) > 0 となるようなtの値の範囲は-5 <t < 5 である。 ただし, 1点のみが重なるときや, 重なる部分がないときは,f(t) = 0 とする。 a b に当てはまる組合せとして正しいものは イ である。 イ の解答群 ① ② ③ ④ a A A C C E b t-1 t+1 t-1 t+1 t-1 以下,このf(t) について考える。 f(0) ウ である。 ⑤ t+1 ⑤ E +

回答募集中 回答数: 0
数学 高校生

イ、ウの求め方がわかりません。 解説を何度も読んだり、色々ネットなどで調べてみたのですが、全くわからず悩んでます。 どなたか長文の問題で本当に申し訳ないのですが教えて欲しいです🙇‍♀️

10 難易度 SELECT SELECT 目標解答時間 15分 90 60 図のように,座標平面のx軸上に AC=CE = 4 となる点 A, C, E をとる。 △ABCとCDE はいずれも∠B= ∠D=90°の直角二等辺三角形であり,この二つの三角形を合わせた図形をKと する。また,一辺の長さが2の正方形FGHI を辺 GH がx軸上にあるように左右に動かす。 すべての 図形はx軸に関して同じ側にあり、すべての図形は,周および内部を考えるものとする。 B A_ 4 → F I EG 2- H xC 図形 K と正方形 FGHI に重なる部分があるとき, 重なる部分の図形の形状として正しくないもの は ア である。 ア の解答群 ⑩ 一つの直角二等辺三角形 ① 二つの直角二等辺三角形 一つの台形 ③一つの五角形 点 a を原点にとり, 実数t を用いて点G( b, 0)とし、図形 K と正方形 FGHI が重なる 分の面積を f(t) とすると,f(t) > 0 となるようなtの値の範囲は-5<t <5である。 ただし, 1点のみが重なるときや, 重なる部分がないときは,f(t) = 0 とする。 a b に当てはまる組合せとして正しいものは イ である。 イ |の解答群 ① ② a A A C C E ⑤ E ⑤ b t-1 t+1 t-1 t+1 t-1 t+1 以下,このf(t) について考える。 f(0) = である。

解決済み 回答数: 1
数学 高校生

【テ.トナ】 教えてほしいです。 お願いします!!

28 難易度 ★★ SELECT BRINGT 目標解答時間 12分 90 60 あるクラスの40人の生徒の国語, 英語のテストの得点(100点満点) のデータをまとめると、 次の のようになった。 ここで表の数値は四捨五入されていない正確な値である。 平均値 分散 最小値 第1四分位数 中央値 第3四分位数 最大値 国語 59.5 144.0 25 英語 56.5 225.0 45.0 62.0 75.0 95 25 45.0 52.5 75.0 95 国語, 英語の得点の箱ひげ図は,それぞれ ア イ である。 ア イ については,最も適当なものを,次の①~③のうちから一つずつ選べ。 e L 0 20 40 60 80 100(点) 0 20 40 60 80 100(点) (2) L T 1 T 0 20 40 60 80 100(点) 0 20 40 60 80 100(点) 2) 国語の得点の四分位偏差, 標準偏差はそれぞれ ウエ オ 点 カキ ク 点である。 また、国語と英語の得点の共分散が108.0 であるとき, 国語と英語の得点の相関係数は ケ コサである。 このとき40人の生徒における国語の各点数を0.5倍すると, 国語の得点の分散の値は になる。 さらに英語の各点数に5点を加えると、 英語の得点の分散の値は トナである。 シス ソタチ」 ツになり、国語と英語の得点の相関係数はテ 3) 相関係数の一般的な性質に関する次の [A] から [C] の説明について、 二 といえる。 [A]のとり得る値の範囲は, 0≦r≦1 である。 [B] もとのデータを片方だけ定数倍すると, rの値が変わることがある。 [C] r=0 のときには,二つの変量の相関関係は強い。 の解答群 [A] だけが正しい (1) [B] だけが正しい ② [C] だけが正しい (3) [A] だけが間違っている ④ [B] だけが間違っている ⑩~⑤のどれでもない (5) [C] だけが間違っている -45- (配点 15) (公式・解法集 28 30 31 34

解決済み 回答数: 1