学年

教科

質問の種類

数学 高校生

この問題の解き方が解説見ても全く分かりません😭 まず1/2とか3C2がどこから出てきた数字なのかが分かりません。 [1]と[2]の違いは何ですか? Pを通らない時の場合は求めないんですか? 教えてください🙇‍♀️🙇‍♀️

重要 例題 50 平面上の点の移動と反復試行 右の図のように、東西に4本, 南北に4本の道路が ある。 地点Aから出発した人が最短の道順を通って 地点Bへ向かう。このとき,途中で地点Pを通る確 率を求めよ。 ただし,各交差点で,東に行くか, 北 に行くかは等確率とし,一方しか行けないときは確 率1でその方向に行くものとする。 CHART & THINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 この理由を考えてみよう。 は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, AP11B の確率は 12/2×/1/2×1/1/2×1/2×1×1=1/16 4C3X1 から, ax1 とするのは誤り! 6C3 P RACTICE 50 ③ 解答 右の図のように,地点 C C', P'をとる。 Pを通る道順には次の2つの場合があり,これらは互いに AN-RANT 排反である。 [1] 道順A→C→C→P→B この確率は 12/3×1/12/3×1/12/1×1×1×1=1/ [2] 道順A→P′→P→B この確率は sc (1/2)^(1/2)×1/1/1×1×1= よって, 求める確率は 1 35 + 8 16 16 |= 8 AP11B の確率は 1/2 ×/×/1/1×1×1×1=1/3 8 よって,Pを通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 3 1016 0000 A ③ 基本48 P' P B B B ○には2個と11個 が入る。 はない A C' C C→Pは1通りの道順であ ることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○↑↑と進む。 北4

回答募集中 回答数: 0
数学 高校生

C'がx軸と異なる点で交わることを確認していなくてもax^2+2(a+1)-3a+1=0を解の公式で解けばxには2つの解があることを分かると思ったのですが、なぜ確認しなければならないのですか?

EXERCISES ②76 αは自然数とし, 2次関数y=x2+ax+b (1) b=1のとき, ①のグラフがx軸と接するのはα= のときである。 (2) b=3のとき, ①のグラフがx軸と異なる2点で交わるような自然数αの中で, α<9 を満たすαの個数は である。 [類 センター試験] 101.102 の値は である。 (一 12 グラフと2次方程式 ③77 aは定数とする。 関数 y=ax²+4x+2のグラフが,x軸と異なる2つの共有点をも つときのαの値の範囲は x軸とただ1つの共有点をもつときのa であり, as 1 batc>u51E ①のグラフを考える。 ) -102 ③78 2次関数y=ax²+bx+cのグラフをCとする。 C をx軸方向に3,y 軸方向に5だ け平行移動したグラフをCとする。 C を表す 2次関数が y=ax²+ (2a+2)x-3a+1であるとき (1) b,c を α で表せ。 (2) C'がx軸から切り取る線分の長さが19であるとき, αの値を求めよ。 -103 [京都学園大] ②79 (1) 放物線y=-x²+2(k+1)x-k² が直線y=4x-2と共有点をもつような定数k の値の範囲を求めよ。 (2) 座標平面上に、 1つの直線と2つの放物線 L:y=ax+b, C1:y=-2x2, C2:y=x²-12x+33 がある。 L と C およびL と C2 が, それぞれ2個の共有点をもつとき アロα2イロロー□<b<a²が成り立つ。ただし, a>0とする。 [ (2) 類 近畿大] <->105 77654197) *#${[85x5\>u! ③802 次関数y=ax2+bx+cのグラフが, 2点(-1, 0),(3,8) を通り, 直線y=2x+6 に接するとき, a, b,c の値を求めよ。 [日本歯大] ➡105 169 3章 12 グラフと2次方程式

回答募集中 回答数: 0