学年

教科

質問の種類

数学 高校生

(2)のとき判別式D<0という条件がないのはなぜですか?解説よろしくお願いします🙇‍♀️

の 基本 例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数」の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 指針 (1)2つの解がともに1より大きい。→α-1> 0 かつβ-1>0 p.87 基本事項 2 1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし,判 | 別解 2次関数 解答別式をDとする。 f(x)=x2-2px+p+2 のグラフを利用する。 =(-p)²-(p+2)= p²-p-2=(p+1)(p-2) (+1)=2(1)=(+1)(p-2)≥0, 解と係数の関係から a+β=2p, aß=p+20pm=8 (1) α>1,ß>1であるための条件は+b) 軸について x=p>1, 38f(1)=3-p>0 D≧0 かつ (α-1)+(B-1)>0 かつ (α-1) (B-1)>0 から 2≦p<3 D≧0 から (p+1)(p-2)≥0 よって p≦-1, 2≦p ...... (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0. > + & p>1 ·· 23-p + Ca (α-1)(β-1)>0 すなわち aβ-(a+β)+1>0 から よって Op+2-2p+1>0) (E- <3 ...... ③ 求める』の値の範囲は, 1, ②, (ST ③ x=py=f(x) B x |(2) f(3)=11-5p<05 ③の共通範囲をとって1m1231 2≦p<3 (2)α<β とすると, α <3 <βであるための条件は (a-3)(β-3)<0 すなわち αβ-3(a+β)+9 <0 題意からα =βはあり えない。 1つの ゆえに p+2-3・2p+9 < 0 = $30 SIN よって p> b> 11

解決済み 回答数: 1
数学 高校生

線で引いたとこの意味がわかりません💦

数学II,数学B,数学C 第4問~第7問は,いずれか3問を選択し,解答しなさい。 以下, a= コ とし, nを自然数とする。 第7問 (選択問題) (配点 16 ) α を正の実数として, xの整式 を考える。 P(x)=x+ax²+ (4-α)x+5-2a P(-1)= ア であり 1-4+1+5-20 P(x)=(x+イ ){x²+(a- ウ r エ a+オ である。 3次方程式 P(x)=が虚数解をもつようなαの値の範囲は 0<a< カキ + 久 であり,このとき,P(x)=0 の虚数解をα,とし, 実数解を y とする。 '+1=0となるの値はα+Q=-atla2+2=(x+- 数学II, 数学 B 数学 C 太郎さんと花子さんは α" + " + y" の値について話をしている。 太郎:計算してみたけど,とは同じ値になっているね。 花子: とも同じ値になっているよ。 太郎:Bについてもαと同じように β^= B, B° = B2 が成り立つよ。このよう に考えていくと α + β" + y” の値がわかりそうだね。 03=B3 = サ であるから nが3の倍数のとき, α+B" = シ nが3の倍数でないとき, "+B"=スセ である。 したがって, α" + β" + y” のとり得る値は ソ 個である。 a= である。 -2 x=5-20 200 数学II,数学B,数学C 第7問は次ページに続く。) 1-172: (x+1) +2=(a+1)-215-20 ++(0-1x+15-2a) =a-20+1-10+4a= 2+205 x+1/2+ax²+(-a)x+5-2aa2+za-9 ナズナズ -(α-1) x² + (α-1)x (0-1)x+(4-0)x (5-2m)x-2a 15-2017+5-29 4xux-ax+x a²+20-9+1=0 02120-8:0 a= 2 +32 -2±6 D= (a-11-45-24 =u-zatP-20- =m²+60-19 x2+10-1)x+15-20) 2-1 | 2³± ળલ+(4-67245-29 (0-1)x²+(4-0)x 470-0 1719 92769-1950 5x. (5-20)x+5-2a 210-117²-10-112 -246-2-6 -6±136 a = Z 2 2 -25- -5 -8 2112 2156 A 57292

解決済み 回答数: 1
数学 高校生

ここの部分ってとこの単元で習う考え方ですか??

17:22 5/12 直交する直線であるから,その方程式は x²+1 この方程式は y= ---(-1)+ 8 x- 5 5 -8)+(y-8)-8" すなわち 4x+ 3 y- 16=0 中心の座標は 0 2 である. 2 である. [2] 心の座標は 8 8 で 8 である。 A. 半径を,とし,Cの中心を とすると (8-0)+(8-2)-10, =2+8=10 を正の定数とし, 祖母は地点0から秒速 メートル, 地点Aから妹は秒速20メートル, 花 子さんは地点Bから秒速40メートルで進む . 100mを長さの単位とし, 座標平面で 0 を 点 (0,0), A を点 (0, 3), B を点(50) として考 える. 祖母と妹の進む距離の比は1:2であるか ら、祖母と妹が点Pで出会うとき が成り立つので,C と C2 ① AP-2 OP 1:4 に内分する点をDとすると, が成り立つ。 ・0+1.8 4・2+1・8 1+4 8 16 5 5 1+4 4より, DはC と C2 の接点で 直線AB の傾きは 8-2 3 8-0 4 •B り Pの座標を (x,y) とおくと, AP-40Pよ (x-0)+(y-3)=4(x²+ y²). 整理すると x+y+2y-3=0 となるから, 点Pは円K x+y+2 y- 3=0 すなわち Cz 上にある. +(y+1)=2 同様に,祖母と花子さんが点Qで出会うとき BQ=40Q が成り立つから,Qの座標を (x, y) とおくと, BQ=160Q より (x-5)+(y-0)=16(x+y^. 整理すると x²+ y²+2x-3=0 となるから, 点Qは円K2 C₁ 2 5 C. と C の両方に接する直線は3 含む), そのうち, 傾きが最小で とすると, l は, D で直線AB と x+y+ -x- 0 3 3 すなわち < ++(4) -5- 無断転載複製禁止 Copyright Kawaijuku Educational Institution. kawai-juku.ac.jp 66

解決済み 回答数: 1
数学 高校生

サがわかりません。 3枚目に蛍光ペンを引いているのですが、なぜq になるのかがわかりません。私は学校で解いた時CD両方y座標が-9だからという理由で-9にしました… 問題が長くてすみませんがどなたかよろしくお願いします🙇‍♀️

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2,7), C(-2,-9), D(-4,-9), E (-7,21) がある。 (i) 2次関数y=f(x) のグラフが, 3点 A, B, Cを通る。 f(x) を求めよ。 (ii) 2次関数y=g(x)のグラフが, 3点C,D,Eを通る。 g(x) を求めよ。 太郎: f(x) は 2次関数だとわかっているから,f(x)=ax2+bx+c とおいて計算すれば, a,b,c の値を求めることができそうだね。 花子: f(x)は2次関数だから、 ア という条件が必要だよ。 太郎: そうだったね。 3点を通る条件が順に a+b+c= イ ウ a+ I |b+c=7 オ a- カ b+c=-9 だから、この連立方程式を解くと, α = キク 6ケ C= と求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎 : たしかに, 2点C, Dのy座標が等しいということから g(x)= サ とすることができるね。 花子: g(x) = | サ とした方が, (i)と同じようにするよりも計算が楽にできそうだね。 (1)~コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2a=0 ③a> o ④ a<0 サ の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +q ② d(x+3)2-9 ③ d(x+3) +q 1

解決済み 回答数: 1
数学 高校生

高校生数II、円と直線です。 下の写真問題の(1)です。赤線の部分なんですが、どうしてこのような式になるのかがわかりません、、。 どなたか途中経過を含めて解説お願いします🙇

0000 の方程式を 基本 4x+5 たす 満たす 例 基本 例題 87 x2+y2+bx+my+n=0 の表す図形 143 00000 (1) 方程式 2+2+6x-8y+9=0 はどのような図形を表すか。 (2)方程式 x2+y2+2px+3py+13=0 が円を表すとき,定数」の値の範囲 を求めよ。 CHART & SOLUTION p.138 基本事項 1 myn=表す図形xyについて平方完成する (x+2・1/2x+(1/2)}+{s+2.3+)-(12)+(豊)として、 (x+1/2)+(x+1)=1 m 12+ m²-4n の形に変形。 4 m +40 のとき,中心(-/1/27) 半径 √2+m²-4m この円を表す。 2 3章 12 円 円と直線,2つの円 解答 (1) ゆえに (x2+6x+9)+(y2-8y+16)=9+16-9 (x+3)2+(y-4)2=16 よって, 中心(-3, 4), 半径4の円を表す。 ( 両辺に x, yの係数の半 分の2乗をそれぞれ加 01 える。 (1)(x+2px++{y+3py+(書)が+(-13 ) + { y²+3py + ( 3³ ³D)² } = p² + ( 3³ ³0)² – 直み 直接 いるか ゆえに 2 (x+p)²+(y+3³p)² = 13³ p²-13 この方程式が円を表すための条件は12-130 ax, yについて,それぞ れ平方完成する。 よって p²-4>0 ゆえに したがって p<-2,2<p (p+2)(p-2)>0 Job (s) INFORMATION x2+y2+bx+my+n= 0 の表す図形 方程式 x2+y2+bx+my+n=0が円を表さない場合もある。 例1 方程式 x2+y2+6x-8y+25=0 の表す図形 実数の性質 変形すると (x+3)2+(y-4)²=0 ←右辺が 0 これを満たす実数x, y は, x=-3, y=4 のみである。 A,Bが実数のとき A'+B2≧0 等号は A=B=0

解決済み 回答数: 1