学年

教科

質問の種類

数学 高校生

数列の問題です。 S-3Sで引き算した後がわかりません。 1+2(3+3の二乗、、、)の出し方を教えてください!

S=1・1+3・3+53 ++(2n-1)・3P-1 一般項が (2n-1) · 37-1 で表される数列の初項から第n項までの和 を求めよ。 PART & SOLUTION CHART& 特産)×(等比)型の数列の S 5-15 を作る(rは公比) 00000 数列の一般項はan=(2n-1)・3n-1 これは等比数列ではないが等比数列に似た形である。 等比数列{ar”-1} の和は s=atartare+ rs= .......+arn-1 artare+......+arn-i+arn ← 引き算しやすい位置に項を書く。 の辺々を引いて (1-r)S=α(1-r") から求めた。 この例題でも、同じ方針で S-3S を計算する。 答 S=1・1+3・3+5・32+....+(n-1)・3-1 両辺に3を掛けると 3.S= 1・3+3・32+. 第 (n-1)項は (2n-3)-3-2 …+(2n-3)・3″-1+(2n-1)・3"計算しやすいように, 3* 辺々を引くと | S-3S=1・1+2・3+2・32 + ...... +2・3n- 1 -(2n-1).3" の項を上下にそろえて 書く。 ~ 383 Sh-1 Sor 介 1歳 3 種々の数列 ト -2S=1+2(3+3°+....+3"-1)-(2n-1)3" ここで3+3°+..+3"-13(37-1-1)=2 (3"-1-1) 3-1 2 ゆえに 3 2 -2S=1+2... (3-1-1)-(2n-1)・3" =1+3"-3-(2n-1)・3" したがって =(2-2n)・3"-2 S=(n-1)・3"+1 (2n-1)・3” である。 符号のミスに注意。 ( )が等比数列の和に なる。 初項3, 公比3 項数 n-1の等比数列の和。 n=1,2を代入して検算 しておくとよい。

未解決 回答数: 1
数学 高校生

どなたか答え合わせお願いします🙇‍♀️🙏💦

Ⅰ. 次の太字の英単語に最も近い意味を持つものを,a~d. の中から1つ選びなさい。 解答 は解答用紙1枚目 (マークシート方式) の所定の解答欄にマークしなさい。 (1) opportunity a. charge b. choice chance d. check (3) criterion a standard b. criticism c. agreement d. sequence (5) compensation a. money given or received as payment for a loss b. mathematical statement showing equal parts c. event where people celebrate d. advantage given to only certain people (7) registration a act of recording information b. idea that leads to further discussion c. strong like or appreciation for another d. one part of a larger component (9) distribute a. derive from an original source b. make available to see c. hand out or deliver something d. be different from others (2) reject a. make illegal refuse to accept c. express support d. give an order (4) application formal request a 6. changed behavior official record d. expression of ideas (6) intervention a. event which results in the police arriving b. having the freedom to make decisions c. distance from front to back d. act of coming between groups in a dispute (8) density a. affection for someone or something X. need for food C degree to which an area is filled or covered d. state of ownership (10) circumstance a. outcome of an event b. addition that makes something better c. feeling or action in response to something d. condition or fact that affects a situation

解決済み 回答数: 3
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1
数学 高校生

質問です。 (2)番の解説をお願いしたいです! 2直線のなす角についてですが、この問題のタンジェントアルファとベータが➖√3と1になるのはなぜでしょうか? 3角の比なので、このグラフ上にその三角比となる三角形があるはずなのですが、自分では見つけられず、、、教えて頂けたら幸い... 続きを読む

(1) 直線y= 角をそれぞれα, β とする。 α, B 求めよ。 ただし, 0°<α<180°0°<β<180° とする。 | (2) 2直線y=-√3x, y=x+1のなす鋭角を求めよ。 指針 直線y=mxとx軸の正の向きとのなす角を0とすると m=tan 0 (0°≤0<90°, 90°<<180°) (1) (後半) 2直線のなす角は,α>βのとき α-βである。 なお, 求めるのは鋭角であるから,α-β>90° ならば 180°-(α-β) が求める角度である。 解答 に等しい。 CPART 2直線のなす角 まず、各直線とx軸のなす角に注 (2) 直線は平行移動しても傾きは変わらないから, 「直線y=mx+nとxi きとのなす角」は,「直線y=mxとx軸の正の向きとのなす角」 tang=-1 (1) 条件から 0° <a <180° であるから また tan β= /3 よって, 求める鋭角は 180°-120°=60° √√3 0°<β <180° であるから β=30° ゆえに, 2直線 ①,②のなす角は α-β=150°-30°=120°>90° α=150° よって 図から, 求める鋭角は tana=-√3, tanβ=1 α=120°, β=45° (2) 2直線y=-√3x, y=x+1の >0の部分とx軸の正の向きと のなす角を,それぞれα, βとすy=3x ると,0°<α<180°0°<ß<180° で 150° a-β=120°-45°=75° /3 +B b y=x+1 p.232 基本事項目 130° √3 x yA O 0° ≤ (1) sine 指針 tan a, tan B はそれ 直線①,②の傾きと 致。 tan 」の三角方面 (p.236 例題 142と 解答 B>90° ならば、 なす鋭角は 18- y=x+1の傾きは y=xの傾きと同じ |tan120°= 3. tan45°=1 求める角は、2 をかいて判断する

解決済み 回答数: 1
数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0