学年

教科

質問の種類

数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
数学 高校生

28. 成り立つことを証明せよ、ということは成り立つことを前提にしていいんですよね?(成り立つことを前提にした式を用いて計算しました。) また、28.1での等号成立条件を解答ではa=0またはb=0と書いていますが、私はab=0と書きましたがこれは問題ないですかね??

2 2階 基本例題 28 不等式の証明 [A'B'≧0の利用] 次の不等式が成り立つことを証明せよ。 また、等号が成り立つのはどのようなと to let lotul0-60 きか。 +3 +pe +8 (6) (1) a≧0,b≧0のとき 5√a +3√6≧√25a+96 (2) a≧0,b≧0のとき √a+√6≦√2(a+b) 指針▷ (1) の差の式は5√a+3√6-√25a+96 であり,これから≧0 は示しにくい。 そこで、証明すべき不等式において, (左辺) ≧0, (右辺) ≧0であることに着目し A≧0, B≧0のとき A≧BA≧B2 の利用を考える。 すなわち,まず (左辺)'≧(右辺) を証明するために, 平方の差 (左辺(右辺)2≧0を示 す。をはずして進める方法 【CHART 大小比較 差を作る 平方の差も利用 (0+dos+ D) 6+10/10087 解答 (1) (5√a+3√6)²−(√25a+9b (+)120=18 =(25a+30√a √b+96)-(25a+96) =30√a √6=30√ab ≥0 0≤(do-/do/)S= Scal- (OS 6 =a-2√ab+b 24854 よって {√2(a+b)}²≥(√a+√b)² √2(a+b)≧0,√a+√6≧0であるから よって (5√a +3√6)² ≥(√25a+9b)² 5 +3√60/25a+96 ≧0であるから利用で 5√a +3√b² √25a+9b 等号が成り立つのは, ① から a=0 または6=0 のときで √ab = 0 27202850 あるとみて、+1 (2) {√2(a+b)}²=(√a+√b)²=2(a+b)−(a+2√ab+b) Tal+lol l =(√√6)² ≥0 ...... Ⓒ p.48 基本事項 3 02(100)+on)s 平方の差。 A≧0, B≧0のとき A≧BA'≧B' 等号が成り立つのは,①からa=bのときである。 すなわち lab]=db から,abl ⇔A'-B'≧0 この確認を忘れずに。 平方の差。 (OTT) (S) 205/6+0/ (実数) 20 adin この確認を忘れずに。 29 √2(a+b)=√a+√6 ==?@@60-00+0,05/01-pl 51 1章 6 不等式の証明

未解決 回答数: 3