学年

教科

質問の種類

数学 高校生

(1)の答えは1なんですけど2はなんで違うんですか?

[10 標準 10分 解答・解説 p.17 先生と太郎さんと花子さんは、次の問題とその解答について話している。 三人の会話を読んで、下の問い 答え 【問題】 xy≦0とする。 x,yの関数 x2-4xy+6y2+6x -4y +22 の最小値を求めよ。 ■ 【解答 A】 x 2-4xy+6y2 + 6x -4y+22 = (x-2y+3)^+2(y+2)² + 5 ここで,-3≦y≧0の範囲で2v+2)² + 5 の最小値は y=-2のとき5 109 であるから 求める最小値は5である。 【解答B】 ここで, -5≦x≦0 の範囲で (x+7)2 +5の最小値は 3 x-4xy+6y² + 6x -4y+ 22=(y-1/3x-1/31) 2+1/(x+7)2 +54 19 x=-5のとき 1/23(-5+7)² + 5 = - 3 BELISAR 19 であるから、求める最小値は である。 3 ア TOO CREFO 先生 : 同じ問題なのに, 解答 A と解答B で答えが違っていますね。 先生:なぜ解答と解答B で違う答えが出てしまったのか、考えてみましょう。 花子: 先生, ひょっとして ア ということですか。 先生: そのとおりです。 よく気づきましたね。 花子: 正しい最小値は イで,そのときのx,yの値はx=ウ (1) BROS HASTA OAS 05-x5=12-281 太郎 : どちらも計算は間違えていないみたい。でも, 答えが違うということは,少なくともどちらか は正しくないということだよね。 AFFOADURA (2) ノイ 同じものを繰り返し選んでもよい。 0-9 0 -7 ---- 3 00 -) ② -5 に当てはまるものを、次の⑩~③のうちから一つ選べ。 ⑩2(y+2)² +5は-3≦y≧0の範囲に最小値をもたない ①x=2y-3かつy=-2を満たすx,yの値が−5≦x≦0-3≦y≧0の範囲に存在しない 160 ②/3(x+7)² +5は5≦x≦0の範囲に最小値をもたない -3 (S) ③y= x+かつx=-5を満たすx,yの値が -5≦x≦0,-3≦y≦0 の範囲に存在しない 3 3 - ARSLAN y=I I に当てはまるものを、次の⑩~⑨のうちから一つずつ選べ。ただし, ですね。 -2 19

回答募集中 回答数: 0
数学 高校生

(1)数列の和から一般校を求めるやり方ですが このやり方だと、snとsn-1の差から公差を求めているので等差数列しかもとまらなくて階差や等比の場合にはもとまらなくないですか?

446 解答 0000 基本 例題 24 数列の和と一般項, 部分数列 |初項から第n項までの和SnがSm = 2n²-n となる数列{an} について (2) 和α+a+as+ +αzn-1 を求めよ。 p.439 基本事項 基本4 (1) 一般項an を求めよ。 指針 (1) 初項から第n項までの和Snと一般項an の関係は n≧2のとき Sn=a+a+ -) Sn-1=a₁ + a₂+. Sn-Sn-1= (1) n ≧2のとき +an-i+an an よって an=S-Sn-1 n=1のとき a1=S1 和 Smがnの式で表された数列については,この公式を利用して一般項an を求める。 (2) 数列の和 まず一般項 (第k項) をんの式で表す .... 第k項 .......+an-1 第1項、第2項,第3項, a1, a3, a5, a2k-1 であるから, an に n=2k-1 を代入して第k項の式を求める。 なお, 数列 a1, A3,A5, ....., azn-1 のように, 数列{an} からいくつかの項を取り除 いてできる数列を, {an}の部分数列という。 =4n-3 ① an=Sn-Sn-1=(2n²-n)-{2(n-1)²-(n-1)} また a=Si=2・12-1=1 ここで, ① において n=1 とすると よって,n=1のときにも ① は成り立つ。 したがって an=4n-3 (2)(1)より, 2-14(2k-1)-3=8k-7であるから ...... α=4・1-3=1 n atastat...... +a2n-1=22k-1=2 (8k-7) k=1 n k=1 = 8. n(n+1)=7n =n(4n-3) S=2²-nであるから Sn-1=2(n-1)²-(n- 初項は特別扱い am はn≧1で1つのボ 表される。 a2k-1 lan=4n-31 いてぃに2k-1を代 の公式を利用 n≧1でan=S-S-」 となる場合 例題 (1) のように, an = Sn-Sn-1 でn=1 とした値と α が一致するのは, Smの式でn= 検討 したとき So=0 すなわち n の多項式 Sn の定数項が 0 となる場合である。 もし、 Sn=2n²n+1(定数項が -S-S1-1=4n-3(n≧2))) り SPEE

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

この問題について教えてもらいたいです。 後、2の集合のところで、なぜ、pはQの要素になるのかも教えてもらいたいです。

ない、 または写 Uであるか - 正しいもの 次の図の斜線 (b) マと (d) 数学 Ⅰ 〔2〕 S高校の全校生徒の人数は400人であり, S 高校には美術部がある。 美術部に 所属している生徒35人のうち15人が, 美術部に所属しながら写真部を設立した いと校長先生に申請書を提出し, 写真部の設立が認められた。 写真部に所属する 生徒はその15人のみである。 (1) S高校の全校生徒の集合を全体集合とし、このうち, 美術部に所属する生徒の 集合をP, 写真部に所属する生徒の集合をQとおく。 また, P, Qの補集合をそ れぞれP Q で表す。 このとき ク O PCQ 4 PCQ ケ ク の解答群 ケ ⑩ない ③ (c)だけである (1 PDQ 65 POQ の解答群 (解答の順序は問わない。) 記述 (a)~(d) のうち正しいものは が成り立つ。 つつ (2)S高校に通うすべての生徒についての記述 (a)~(d) がある。 S高校に通うすべての生徒は, 美術部に所属している, または写真部に所属 している。 X B PEQ 6 PEQ (b)S高校に通うすべての生徒は, 美術部に所属している, または写真部に所属 していない。 PA (c)S高校に通うすべての生徒は、美術部に所属していない, または写真部に所 属している。 (d) S高校に通うすべての生徒は, 美術部に所属していない, または写真部に所 属していない。 コ 。 ③3③ P⇒ Q P=Q ① (a)だけである ④ (d)だけである PUBX ② (b)だけである

回答募集中 回答数: 0