数学
高校生

(1)の答えは1なんですけど2はなんで違うんですか?

[10 標準 10分 解答・解説 p.17 先生と太郎さんと花子さんは、次の問題とその解答について話している。 三人の会話を読んで、下の問い 答え 【問題】 xy≦0とする。 x,yの関数 x2-4xy+6y2+6x -4y +22 の最小値を求めよ。 ■ 【解答 A】 x 2-4xy+6y2 + 6x -4y+22 = (x-2y+3)^+2(y+2)² + 5 ここで,-3≦y≧0の範囲で2v+2)² + 5 の最小値は y=-2のとき5 109 であるから 求める最小値は5である。 【解答B】 ここで, -5≦x≦0 の範囲で (x+7)2 +5の最小値は 3 x-4xy+6y² + 6x -4y+ 22=(y-1/3x-1/31) 2+1/(x+7)2 +54 19 x=-5のとき 1/23(-5+7)² + 5 = - 3 BELISAR 19 であるから、求める最小値は である。 3 ア TOO CREFO 先生 : 同じ問題なのに, 解答 A と解答B で答えが違っていますね。 先生:なぜ解答と解答B で違う答えが出てしまったのか、考えてみましょう。 花子: 先生, ひょっとして ア ということですか。 先生: そのとおりです。 よく気づきましたね。 花子: 正しい最小値は イで,そのときのx,yの値はx=ウ (1) BROS HASTA OAS 05-x5=12-281 太郎 : どちらも計算は間違えていないみたい。でも, 答えが違うということは,少なくともどちらか は正しくないということだよね。 AFFOADURA (2) ノイ 同じものを繰り返し選んでもよい。 0-9 0 -7 ---- 3 00 -) ② -5 に当てはまるものを、次の⑩~③のうちから一つ選べ。 ⑩2(y+2)² +5は-3≦y≧0の範囲に最小値をもたない ①x=2y-3かつy=-2を満たすx,yの値が−5≦x≦0-3≦y≧0の範囲に存在しない 160 ②/3(x+7)² +5は5≦x≦0の範囲に最小値をもたない -3 (S) ③y= x+かつx=-5を満たすx,yの値が -5≦x≦0,-3≦y≦0 の範囲に存在しない 3 3 - ARSLAN y=I I に当てはまるものを、次の⑩~⑨のうちから一つずつ選べ。ただし, ですね。 -2 19

回答

まだ回答がありません。

疑問は解決しましたか?