学年

教科

質問の種類

数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
数学 高校生

103.3 答えは±a=±bでないのですか? (k,l)=(1,1),(-1,-1)だから a=-bになることはないのに なぜa=±bとなるのですか?

暴 O 0 G 基本例題 103 約数と倍数 bは0でない整数とする。 40 がともに整数であるようなαをすべて求めよ。 a, a (1) 1号と 5 a aとbがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (3) a が6の倍数で,かつαが6の約数であるとき,aをbで表せ。 指針 「αが6の倍数である」 ことは, 「 6 がαの約数である」 ことと同じであり、このとき,整数kを用いて ana=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 a が整数であるから,αは5の倍数である。 ゆえに,を整数として α=5kと表される。 40 40 8 よって a 5k k 40 が整数となるのは, kが8の約数のときであるから a k=±1, ±2, ±4, ±8 したがって a = ±5, ±10, ±20, ±40 (2) a,bが3の倍数であるから, 整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7a-4b=7.3k-4-31=3(7k-4l) 7k-4lは整数であるから,74-4bは3の倍数である。 (③) αがもの倍数αがりの約数であるから,整数k, lを用いて と表される。 a=bk, b=al a=bk を b=al に代入し, 変形すると b=0 であるから kl=1 BATDOOR k=l=±1 (検討 これは 誤り! 練習 Wo b(kl-1)=0 k, lは整数であるから FOR a=±b したがって p.468 基本事項 ①) bαの約数 a=bk Labの倍数 =k(kは整数)とおい 5 てもよい。 +001 <a =5k を代入。 負の約数も考える。 <a =5kにんの値を代入。 整数の和差積は整数で ある。 αを消去する。 k,lはともに1の約数であ る。 上の解答の これではa=bとなり,この場合しか証明したことにならない。 a, 6 は別々の値をと のようにk, l (別の文字) を用いて表さなければならない。 で, lを用いずに, 例えば (2) でa=3k, b=3kのように書いてはダメ! る変数であるから、 (1) 2つの整数α, bに対して, a=bk となる整数k が存在するとき, bla と書く とき α|20 かつ 2 であるような整数αを求めよ。 a,b,c,d は整数とする。 469 4章 17 約数と倍数、最大公約数と最小公倍数

回答募集中 回答数: 0
数学 高校生

平面ベクトルの問題です。 青色の[のところで、条件を満たすaベクトルとbベクトルが存在することを確認したと解説に書いてあります。ここでは絶対値bベクトルの値のみを出していますが、何故これだけでaベクトルも存在すると言えるのでしょうか?

598 第9章 平面上のベクトル Check 例題 341 内積とベクトルの大きさ (3) ベクトル , が |a-6|=1, |2a+36|=1 を満たすとき, la +6の最 大値、最小値を求めよ. [考え方 a-t=u, 2a+3= v とおくと, ||=1, |v|=1, +6=1/12 (+27) となる. ■解答 ①, 2a+35 = v..... ② とおくと, ||=1, |v|=1 ①,②より, d, u, o で表すと, v-2u a=³u+v₁ f = v 5 á+b=- u+2v よって, 5 lã+ô²= ù+²ï ³ = ² (lū²+¹ù •õ +4|b³²) u+2v =(\ 5 25 = 5 1 = (1²+4u •v+4×1²)=(5+4u•v) … ③ 25 25 ここで,|||| ||||より -1≤u.v≤1 したがって、 ③ より 1/5 += 1/35 部 25 25 là tỏ lào 2 ô là tôi 6-23 となるのは、1のときであり、このと きことは同じ向きで, ||=||=1 であるから, u=v すなわち, ① ② より, a-6=2a+36 であるから a=-4b このとき,la-6|=|-56|=1 より |6|= += 1/3 となるのは,v=-1のときであり,このと きとは逆向きで, ||=||=1 であるから, すなわち, ①,②より, a-6=(2a+3) であるから, u=-v 3 このとき,一=一=1より。 16=2号作る よって、16の最大値 24 25 最小値 1/3 *** 練習 341 大値、最小値を求めよ. *** ① ×3+② より 5a=3u+v ②① ×2より 56=v-2u |||=1, |v|=1 a∙b=alb|cose -1≤cos 0≤1 h), -laba-bab a = |a| 6| のとき、 COS 01 より, 0=0° 条件を満たすa, b が存在することを確 認したが、省略して もよい。 at = -12||3|のと 3, cos0=-1), 0=180° 平面上のベクトルa,b が \2a+6=1, la-36|=1 を満たすとき、a+6の P.603@ Chec 1511 「考え 解

回答募集中 回答数: 0