学年

教科

質問の種類

数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

解決済み 回答数: 1
数学 高校生

なぜ目の和が3以上18以下だとわかるのですか? 教えてほしいです🙇‍♀️

大小2個のさいころを投げ なる場合 同じ大きさで区別のできない3個のさいころを投げて、目の和が 通りあるか。 数になる場合は何通りあるか。 CHART & SOLUTION 同時に起こらない場合の数 和の法則 基本 (1) 目の和が5または6になる場合は起こり方に重複はない。 和の法則を使う。 (2) 目の和が7の倍数になるのは目の和が7, 14の2通り。 (1) と同様に, 和の法則が る。 目の和が7のとき, 6の目を含むと残りの目が2つとも1でも和が7 から、6の目は含まれない。 あらかじめ6を除いて考え, 効率よく数える。 解答 (1) 大,小さいころの目の数を,それぞれx, yとし,出る 目を (x, y) で表す。 [1] x+y=5 のとき (x,y)=(1,4), (2,3),(3,2),(4, 1) [2] x+y=6 のとき (x,y)=(1,5) (2,4) (3,3) (4,2) (5,1) よって, 和の法則により 4+5=9(通り) (2)目の和は3以上18以下であるから,目の和が7の倍数 になるのは 7, 14の2通りである。 3つのさいころの目を{□□□} で表す。 [1] 目の和が7のとき {1, 1,5}, {1, 2, 4}, {1, 3, 3}, {2,2,3} [2] 目の和が14のとき {2,6,6}, {3, 5, 6}, {4, 4, 6}, {4,5,5} よって, 和の法則により 4+4=8(通り) INFORMATION さいころの目の区別 大 1 1 234 12 2 3 34 4 5 160/6 56 345 4 15/6/7 7 189 6 67 5 67 8 9100 6 789 10 [1] の場合 ・ [2] の場合 区別できないさい であるから、例え {1, 1,5}と{5, は同じ場合と考 「大小2個のさいころ」とは, 「2個のさいころを区別して考えよ」 ということ 例えば,(x,y)=(1,4) と (x,y)=(4, 1) は異なる目の出方を表す。 一方、 のできない2個のさいころ」 のときは (1,4) と (41) は同じ目の出方と考 この目の出方を集合で {1, 4}と表し, 順序を考慮した (14) と区別する。 ACTION

解決済み 回答数: 1
数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
数学 高校生

基本例題94(3)の解説黄線部(下から2行目) 代入・整理しても答えが違うので、計算過程を教えてください🙇

154 基本 例題 94 2つの円の交点を通る円 直線 ・・・・・・② について 2つの円は、異なる2点で交わることを示せ。 2つの円x+y=5 ...... 1, (x-1)2+(y-2)²=4 (1) (2) 2つの円の交点を通る直線の方程式を求めよ。 (3)2つの円の交点と点 (0, 3) を通る円の中心と半径を求めよ。 CHART & THINKING (1) 2つの円の半径と中心間の距離の関係を調べる。 000 基本 77, p. 139 基本事項 (2)(3)2つの円の交点の座標を求めることは面倒。 そこで、 次に示すか.129 基本例題 77 の考え方を応用してみよう。 2曲線 f(x,y)=0,g(x,y)=0 の交点を通る曲線 方程式 kf (x, y)+g(x,y)=((は定数)を考える ①,②を形にして,k(x+y2-5)+(x-1)+(y-2)^-40 ③ とすると, ③は2つの円の交点を通る図形を表す。 (2) ③が直線を表すときのんは? (3)③が点 (0, 3) を通るときのは? 解答 (1)円 ①,② の半径は順に5,2である。 2つの円の中心(0,0),(1,2)間の距離をdとすると d=√12+22=√5から √5-21<d<√5+2 よって, 2円 ① ② は異なる2点で交わる。 (c)+( (2)k(x2+y2-5)+(x-1)+(y-22-40(kは定数)・・・・・・ ③ とすると,③は2つの円①,② の交点を通る図形を表す。 これが直線となるのは k=-1のときであるから, ③ に k=-1 を代入すると +(x-1)+(y-2)2-4=0 x+2y-3=0 (3)③ (03) を通るとして ② 半径2 (2) 2, (3) -k= 1 x k=-1 Ir-r'<d<rty' inf③は円 ①を表す ことはできない。 ③がxyの1次式と なるように, kの値を 定める。 inf (2) の直線の方程式 と①の円の方程式を連 立させて解くと,直線と 円の交点, すなわち2つ ①と②の交点が求 められる。 (x2+y2-5) 整理すると ③ に x=0, y=3 を代入して整理 ① すると4k-20 よって k= 1/2 半径5 20% これを③に代入して整理すると (2)+(14)-20 29 9 よって中心 ( 31 ) 2 2 3' /29 半径 - Ee 3 RACTICE 942 k(02+32-5) +{(-1)^+1-4}=0 2つの円x2+y2=10,x2+y2-2x+6y+2=0 の2つの交点の座標を求めよ。 また, 2つの交点と原点を通る円の中心と半径を求めよ。 0

未解決 回答数: 1
数学 高校生

P(A)=21/36の36というのはどうやって計算したか教えてください🙇

4.24(木) (小間集合で複数分野を復習しましょう。 ちょっと多いかも。がんばろう!) (1) AB=7,BC=8, CA=9 である △ABCの重心をGとする。 (i) cos ∠ABC の値を求めよ。 (ii) 線分AGの長さを求めよ。 (2) 1個のさいころを繰り返し投げ、 出た目の和が7以上になった時点で終了 する。 終了するまでに投げた回数が2である」 という事象をAとし、 「1の目が少なくとも1回出る」 という事象をBとする。 (i) 確率 P(A) を求めよ。 (ii) 条件付き確率 P (B) を求めよ。 (3) (i) 2進法で表された数 111()を10進法で表せ。 (ii) 4進法で表された数 111.11 () を2進法で表せ。 (4) αは実数の定数とし、 関数f(x) を f(x)=x?-2ax-2+1 とする。 (i) 放物線y=f(x)の頂点の座標を求めよ。 (ii) αの値を求めよ。 におけるf(x)の最小値が0であるとき、 (1)(1) 余弦定理より COS∠ABC= = 49+64-81 2.7.8 3322 4-7-88 2 . B 7 ① M G 9 (1) BCの中点をMとおくと、AG:GM=2:1 である。ΔABMで余弦定理より AM²=49+16-2-7.4.12/23・49. AM>0より AM=7. (3) (1) 川 (2) =2x1+2x1+20x1 =4+2+1 = 7 + (ii) |111| (4) ° X * 4* |+4× | +4°× | + 4 *x+4x | =2x1+2x+2x1+2×1+2x1 10101.0101 (2) # (4) (1) f(x)=x^2-2a-20²+ | = (x-a)³-3a²+1 よって、頂点は(a,-302+1) 女 (軸のだから場合分けをする。 ① aco のとき minf(0)=-2041=0 a² = 1/1 201 したがって、AG=AMX 1/32 =7×3=1 2 Q = I (2) (1) 終了するまでに投げた回数が2回と なるのは、 |- 1-6-2-824 the の21通り、よって、P(A)=話・7/2 acoy a ②0≦a≦l のとき min fla)=-3a+1= = 0 a=土 Deaɛl my as to M 11/1

解決済み 回答数: 1