学年

教科

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

(2)で少なくともa>0になるのはなぜですか。

第4章 基礎問 86 第4章 極限 49 関数の極限 (II) 次の式をみたすもの値を求めよ。 (1)/ lim 1-2 av '+2x+8+ 3 x-2 = 4 (2)/lim{vr2-2x+4-(ax+b)}=0 18 (大) mil =lim (1-a)-2(1+ab)x+4-b² →∞ 精講 このタイプもIIB ベク82 で学習済みですが, ポイントになる考え 方は,不定形は 「極限値が存在しない」のではなく, 「存在する可能 =lim- 8 87 (2) lim-2x+4+∞だから、 与式が成りたつためには、少なく P とも,a>0.このとき lim (-2x+4-(ax+b)) →∞ =lim 811 {v-2x+4-(a+b){-2x+4+(x+b)) x²-2x+4+(x+b) -2x+4+ax+b 4-62 (1-a)x-2(1+ab)+· I 2. 4 ・① 1- + b +a+- I (x→ +∞ より 0 と考えてよい 性は残っている」 ということです. (1)では, →2のとき分母→0. このとき, 「分子→0以外の定数」 ならば,極 は∞となるので、2にはならない。よって、極限値が4になるとす れば,「分子→0」 となる以外に可能性は残されていない この極限値が0になるので、1-60,a>0より1 ①式=-(1+b)=0 このとき :.b=-1 逆に,=1,b=-1 のとき, 3 (与式の左辺) = lim = 0 1-0 √x²-2x+4+x−1 ただし、この考え方は必要条件になるので,最後に吟味(=確かめ) を忘れな いようにしなければなりません。 となり確かに適する. 吟味 A ポイント 不定形は, 極限値が存在しないと決まっているのでは

解決済み 回答数: 1