学年

教科

質問の種類

数学 高校生

(1)の問題ですなか最後108もとまったときに109と同じ英語の並び方になりました。自分は左から3個目の英語の並べ方までは計算で求めましたその答えが108になりました、そして、そのあと残りの3個は辞書順の並べ方に並べました、なのに109と同じ英語の並び方になりました!なぜ一... 続きを読む

辞書式に並べる。ただし,ADHISU を1番目,ADHIUS を2番目, DAIの6文字を全部使ってできる文字列(順列)をアルファベット順の OOO0 [広島修道大) (2) 文字列 SHUDAI は何番目か。 (1) 110 番目の文字列は何か。 CHART Q GUIDE) UIOE (1) A口OOBOの形のものは 5!=D120(個) 110<120 であるから,初めの文字はAと決まる。 AD口■■■ の形のものは 4!=24(個)であるから,以下同様に AHO■■ロ 順列のn番目 順に並べ,タイプ別に分類 AIロロ■ロ, と絞り込んでいく。 (2) Sで始まる文字列は さらに SH で始まる文字列は SHU口ロロ,………と絞り込んでいく。 SA口ロ■ロ, SDOロ■ロ, SHO■■■, SHA口ロロ, SHDO■ロ, SHIOOロ, 日 解答田 コ) A□■■■口の形の文字列は 5!=5-4·3-2·1=120(個) AD口ロ■ロ, AHO■■■, AIO■■■, ASOロ■■まで ーアルファベットの順に 理し、個数を数えてい の形の文字列は 4!×4=96(個)ある。 さらに,AUDロロロ, AUH口■■までの形のものは 96+3!×2=108(個)ある。 o0 よって,109 番目は AUIDHS, 110 番目は AUIDSH

回答募集中 回答数: 0
数学 高校生

2番の問題の左辺を合成する時は0≦θ<2πだから、 答えは2sinθ(θ+11/6π)になるのではないのですか? なぜ、2sin(θーπ/6)になるのか分かりません。 わかる方回答お願いします🙇🏻‍♀️

三角関数を含む方程式不等式(合成の利用) 0SO<2x のとき,次の方程式·不等式を解け。 219 基礎例題134 基礎例題123, 132 O00 (1) sin0+V3 cos0=-1 .Ada (2) V3 sin0- cos0<0 CHART GUIDE) asin0とbcos0 (a, bは定数)が混在した方程式·不等式 三角関数の合成によって, 種類を統一する 1 与式を(1)rsin(0+a)=-1 (2) rsin(0+a)<0 の形に変形する。 2 方程式·不等式を解く。 0+α=t とおく。tの変域に注意。 0=t-a から、解を求める。慣れてきたら, tとおき換えなくてもよい。 3 日解答田 (1)方程式の左辺を変形して (0 の 2sin(e+)--1 すなわち sin(e+5)=-} V3 35 O+-=t とおくと 3 1 sint= 2 3! 0 1 1 四 また <2x+。 π t 7 6を 3 3 3 1x 1 の解は 2 -1 この範囲で, sint= ーsくーズの範囲で Tπ 3 11 67 のときの 7 1 sint= 11 Tπ 6 - の解を求め ー1 t=, 0=t-であるから03D, 6 る。 T20 とする 5 3 - Tπ 3 6 aie 2sin(o-号)<0 (2) 不等式の左辺を変形して V3 0--=t とおくと 2sint<0 0 ーエSt<2πー 6 BC Y この範囲で,sint<0 の解は 9 のを 1x 6 -1 -ハt<0, πくtく 11 -Tπ 6 田題の>1--|しり で sint<0 の解を求め るから,てくt<2π とす るのは誤り。 0=t+ であるから,各辺にを 加えて 030<くのく2 7 0S0<エ 6'6 Aar 甘 10く

回答募集中 回答数: 0
数学 高校生

この接戦の方程式⑴番の問題でなぜy-1=4(x-0)になるのかわかりません。解説お願いします。

基礎例題166 ~発展例題179 282 接点や傾きが与えられた場合 接線の方程式(1) 基礎例 関数 y= 接線の方を 基礎例題169 (2) 傾きが-4である接線 CHAE Q G (1) グラフ上の点 (0, 1) における接線 CHART QGUIDE) 曲線 y=f(x) 上の点(a, f(a))における接線 傾き f'(a), 方程式 y-f(a)=f"(a)(x-a) (2)は次の要領で求める。 1 y=f(x) とし, 導関数f'(x) を求める。 2 接点のx座標をaとし, f'(a)=(傾き) となる aの値を求める。 3 接点の座標を求め,公式を利用して接線の方程式を求める。 日解答田 (ローx) 日解き f(x)=-2x°+4x+1 とすると (1) f(0)=4 であるから, 求める接線の f(x)=-4x+4 F(x)= 」と同意 一前ページの[例と 接線の傾きf(0) をむ 12) 『関数」 におけ 方程式は ソー1=4(x-0) すなわち 公式に当てはめる。 y=4x+1 (2) 接点のx座標をaとし, f'(a)=D-4 とすると 1 9 -4a+4=-4 すな 4 ーf(a)=-4a+4 ーf(2)=-2-2"+4-2+1 ゆえに a=2 また f(2)=1 1 0 2 x この よって, 求める接線の方程式は ソー1=-4(x-2) y=f(x) =1 すなわち 一接点の座標は(2, 1) 整理 y=-4x+9 Lecture 導関数の図形的意味 ゆ し 関数 y=f(x) の x=a における微分係数 f'(a) は, ソ=f(x)のグラフ上の点(a, f(a)) における接線の傾きを表す。 したがって,導関数f'(x) は, もとの関数 y=f(x) のグラ フ上の各点における接線の傾きを与える関数ともいえる。 例] f(x)=-2.x°+4x+1 のとき 例 傾きが -4+4 y=f(x)- 1 上の例題の関数。 f(x)=-4x+4 ソ=f(x) のグラフ上の, x座標がtである点における接線の 傾きは -4t+4 である(右の図参照)。 10112 微分

回答募集中 回答数: 0
数学 高校生

こういう一致する系の問題にコツはありますか?

AB=BC=CA または ZA=DZB= ZC を示す EX 53 AABCの内心と重心が一致するとき, △ABC は正三角形である。 外心·内心重心が一致する三角形 (証明) 基礎例題 53 基礎例題 50~52 次の条件を満たす△ABC は正三角形であることを示せ。 (1) 重心と外心が一致する。 (2) 外心と内心が一致する。 CHART QGUIDE) AABCが正三角形であることの証明 …3つの辺の垂直二等分線の交点 *3つの辺の中線の交点 ……3つの角の二等分線の交点 外心 重心 これらの性質を利用する。 内心 日解答日 (1) AABC の重心と外心が一致するとき, その点をGとする。 点Gは重心であるから, 直線 AGは辺 重心 G BC の中点Dを通る。 の また,点Gは外心でもあるから, Gは線 分 BCの垂直二等分線上にある。 よって, ①から, 直線 AD は辺 BC の垂直二等分線である。 B D C 外心 ゆえに AB=AC 同様にして BA=BC よって AB=BC=CA したがって, △ABC は正三角形である。 (2) △ABC の外心と内心が一致するとき, その点をOとする。 点0は外心であるから OB=OC ゆえに ZOBC=Z0CB 内心 また,点0は△ABC の内心でもあるから ZB=22OBC ZC=2Z0CB の~のから ZB=ZC ZA=ZC ZA=ZB=ZC したがって, AABCは正三角形である。 B D C 同様にして よって BAA せ。

回答募集中 回答数: 0
数学 高校生

kってどこからでてきたんですか?

QGUIDE) 2直線 ax+ by+c=0, dx+ey+f=0 の交点を A(ax+ by+c)+(dx+ey+f)=0 (kは定数) 図 2で求めたんの値を国の方程式に代入し, x, yについて整理す 例えば,上の解答の③は,kの値を変化させると,直線①, ② の交点を通ぶ は,2直線の交点を通る直線を表す(直線 ax+by+c=0 は表すことができない 2直線の交 のの交点 の, x+2y-1=0 基礎例題80 2直線 2x-3y+4=0 トム 2 UP B(2, 3) を通る直線の方程式を求めよ。 題にお GHART QGUIDE) I 0, のの交点を通る直線の方程式を とおく。 が2 次の2 限点1 を変 ここで ことが k(2x-3y+4)+(x+2y-1)=0 日解答田 2直 をを定数として,方程式 (2x-3y+4)+(x+2y-1)=01 V B(2,3) から 交点Aのよ の 式0.0 の 3 り の表す図形は,2直線 ①, ② の交 点Aを通る直線である。 直線3が点B(2, 3) を通るとき k(2-2-3-3+4)+(2+2-3-1)=0 3-1 よって、 x|の方程式は 01 ソ-3=- 2- ゆえに ーk+7=0 よって これを③に代入して整理すると k=7 15x-19y+27=0ha すなわち Lecture 2直線の交点を通る直線 交わる2直線 ax+by+c=0, dx+ey+f=0 に対し k(ax+by+c)+(dx+ey+f)=0 (kは定数) は,2直線の交点を通る直線を表す(直線 ax+hu+c=0 は表すことかい。 例えば、上の解答の③は,kの値を変化さキろと 直独①. ②の交点 線を表す。 なお,上の解答の最大の竹 いうと

回答募集中 回答数: 0