学年

教科

質問の種類

数学 高校生

高一数学です。(2)がわかりません。なぜ絶対値なのに二乗するんですか?

基本 例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて,次の命題を証明せよ。 (1)x+y=2 ならば 「x≦1 または y≦1」 (2)2 +626 ならば 「|α+6|>1 または |α-6|>3」 CHART & SOLUTION 対偶の利用 00000 p.76 基本事項 6 2章 6 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。そこで,対偶が真であることを証明し, もとの命題も真である, と証明する。 条件 「x≦1 または y≦1」 の否定は 「x>1 かつ y>1」 (2) 対偶が真であることの証明には、次のことを利用するとよい。 解答 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 「x>1 かつ y>1」 ならば x+y=2 これを証明する。 x> 1, y>1 から x+y>1+1 すなわち x+y>2 よって, x+y=2 であるから, 対偶は真である。 したがって,もとの命題も真である。 麺 (2) 与えられた命題の対偶は 「la +6≦1 かつ a-b≦3」 ならば2+b2<6 これを証明する。 ←pg の対偶は g⇒ b ←x>a,y>b ならば x+y>a+b (p.54 不等式の性質) 0 論理と集合 = 0 される |a+6|≦1, |a-b≦3から (a+b)≤12, (a-6)²≤32 ←|A|=A2 >1 よって (a+b)2+(a-b)2≦1+9 ゆえに 2(a²+b²)≤10 よって a²+b²≤5 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + b'≦5 と 56 から a2+62<6 S POINT 条件の否定条件p, gの否定を、それぞれp, gで表す。 かつ または -PNQ=PUQ またはq かつ PUQ=PnQ PRACTICE 43° 文字はすべて実数とする。 次の命題を, 対偶を (1)x+ya ば 「xa-b または y>b」 (2)xについての方程式 ax+b=0 がただ1つ して証明せよ。 もつならば

未解決 回答数: 0
数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0
数学 高校生

x+y+z=0の場合も考えないといけないのはなぜですか?

y+z=2 x 日本 例題 26 比例式の値 y z+x=x+y ①①①①① Z のとき、この式の値を求めよ。 基本25 CHART O OLUTION 比例式は=kとおく ...... ****** ・ x y+z_z+x_x+y=k とおくと 解答 等式の証明ではなく, ここでは比例式そのものの値を求める y 2 この3つの式からkの値を求める。 辺々を加えると, 共通因数 x+y+z が両辺 にできる。これを手がかりとして, x+y+zまたはkの値が求められる。 求め の値に対しては,(分母)≠0(x0,yキ0,z≠0) を忘れずに確認する。 分母は0でないから 2+x_x+y= y+z=xk, z+x=yk, x+y=zk xyz=0 _XT =k とおくと X y 2 xyz = 0x≠0 かつ y=0 かつz0 y+z=xk ①, z+x=yk ①+②+③ から 2(x+y+z)=(x+y+z)k ・・②, x+y=zk ③ よって ゆえに (-2) (x+y+z)=0 k=2 または x+y+z=0 [1] k=2 のとき x+y+zが0になる可 能性もあるから, 両辺を これで割ってはいけな ① ② ③ から y+z=2x ④,z+x=2y ****** ⑤ x+y=2z ****** ⑤から y-x=2x-2y よって ⑥ x=y これを⑥に代入すると x+x=2z よ よって x=z したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x _y+z=x=-1 よって k=1 x x [1], [2] から, 求める式の値は 2,1 INFORMATION 例えば x=y=z=1 例えば,x=3, y=- z=-2 など, xyz キ かつ x+y+z=0 を たす実数x, y, zの 存在する。 ①~③の左辺は,x,y,zの循環形 (x→y→z→x とおくと次の式が得られる) なっている。循環形の式は、上の解答のように,辺々を加えたり引いたりするとう くいくことが多い。 一般には, 連立方程式を解く要領で文字を減らすのが原則であ

未解決 回答数: 0
数学 高校生

A外れの場合5/19 Aあたりの場合4/19 よってBの確率は9/19って考えたんですけど、これはどうして違いますか??また、チャートはどのように考えてこの求め方ですか?

320 基本 例題 38 確率の加法定理 ( 順列) 00000 20本のくじの中に当たりくじが5本ある。 このくじをa,b 2人がこの順に、 1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 ただし 引いたくじはもとに戻さないものとする。 p.312 基本事項 CHART & SOLUTION 確率 P(AUB) A,Bが排反ならP(A)+P(B) bが当たる場合は,次の2つの事象に分かれる。 Baがはずれ, bは当たる Aが当たり bも当たる よって, 事象A, B の関係(A∩BØかどうか)に注目する。 解答 P 5 1 aが当たる確率は 20P1 20 4 次に, a, b 2人がこの順にくじを1本ずつ引くとき,起こり うるすべての場合の数は 24P2=380 (通り) 2本のくじを取り出して、 このうち, bが当たる場合の数は Aa が当たり, bも当たる場合 Baがはずれ, b が当たる場合 5P2=20 (通り) a,bの前に並べる場合 の数。 15×5=75 (通り) A. Bは互いに排反であるから, 確率の加法定理により, bが当たる確率は 20 P(AUB) P(A)+P(B)=- 75 95 1 + 380 380 380 4 事象A,Bは同時に起 こらない。 INFORMATION 当たりくじを引く確率は同じ 上の例題において, 1本目が当たる確率と2本目が当たる確率はともに等しい。 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また、引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当たる 確率はともに 11 である。したがって 1 当たりくじを引く確率は、引く順、 もとに戻す もとに戻さないに関係なく等しい。 PRACTICE 38° 20本のくじの中に当たりくじが4本ある。 このくじをa, b,c3人がこの順に1本 ずつ1回だけ引くとき、 次の確率を求めよ。 ただし、引いたくじはもとに戻さない のとする。 (1) aが当たり,cも当たる確率 (2) は 確率

未解決 回答数: 2