学年

教科

質問の種類

数学 高校生

⑵(ii)の条件付き確率ですが、写真のように解きました。(そもそも計算ミスっててX=6の確率が違くてめっちゃわかりにくくてすいません💦) 計算してみて、1より大きくなったので、絶対違うのはわかるんですけど、なんで分母が1/6は違うんですか?(写真3枚目)

Date ④ 【4】 中の見えない袋の中に赤玉1個と白玉2個が入っている。このとき,次の試行 T:袋から玉を1個取り出し, 色を確認してから元に戻す をくり返し行う. このとき、次の各問いに答えよ. 結果のみではなく、考え方の筋道も記せ. (1) 試行Tを4回くり返すとき,次の確率を求めよ. (i) 4回とも同じ色の玉を取り出す確率. (ii) 4回目に取り出すのが2度目の赤玉である確率. () 赤玉を2回以上連続して取り出す確率. (2) 袋に黒玉を1個追加して、試行Tをくり返す. 1回の試行で赤玉を取り出すと2点、白玉を取り出すと1点もらえるが, 黒玉を 取り出すとそれまでに獲得した点数が0点になるとする. 試行を何回かくり返し, 獲得した点数の合計を X とする.たとえば,試行を5回くり返し, 白玉、白玉、黒玉,赤玉, 白玉 の順に玉を取り出すと、3回目に黒玉を取り出したのでそれまでの得点は0点とな り4回目の赤玉の2点と5回目の白玉の1点の合計から,X = 3 である. (i) 試行を7回くり返すとき,X = 0 である確率を求めよ. (五) 試行を7回くり返すとする.X = 6 である確率を求めよ. また, X = 6 である とき、少なくとも2回は赤玉が取り出されていた条件付き確率を求めよ。 () 試行を3回くり返すとき,X の期待値を求めよ. (50点)

解決済み 回答数: 1
数学 高校生

⑶教えてほしいです、ちなみに、自分で解いたのが写真3枚目なんですけど、答えは48でした

Date 【5】 図のように正五角形の頂点となる5つの地点 A, B, C,D,Eがある. これらは辺と対角線からなる10本の道 でつながっていて, 頂点間の移動はこれらの道を通って行 われる.なお,道の途中で他の道に移ることはできない. 次の各問いに答えよ. 結果のみではなく, 考え方の筋道も 記せ. B (1) Aから出発し, B, C, D, Eの4地点をちょうど一度 ずつ通ってからAに戻る道順を考える.例えば,以下は 条件を満たす道順のうちの3つである。 C A E A→B→C→D→E→A A→C→E→D→B→ A A→E→D→C→B→A (i) 条件を満たす道順の総数を求めよ. (ii) (i) のうち, C→Dという移動を含む道順の総数を求めよ. (2) Aから出発し, Bだけをちょうど二度通り, C,D,Eは一度だけ通ってAに戻 る道順を考える.例えば,以下は条件を満たす道順のうちの1つである. A→B→C→D→B→E→A ただし, BBのように、同じ点に留まるものは、二度通ったとはみなさない。 (i) 条件を満たす道順の総数を求めよ. (i) (1) のうち, .→B→E→B→・・・のように同じ道を続けて通る移動を含む道順 の総数を求めよ. (3) Aから出発し, B, C,D,Eのうち, 1地点だけをちょうど二度通り,残りの3 地点は一度だけ通ってAに戻る道順を考える.そのような道順のうち, 同じ道を 通らないような道順の総数を求めよ. 1年 駿台6月 ☆BCDEの順列を考えればよいだけ! 4! =4×3×2= 24 (ii) B [CD] E 31=3×2=6. ■(i) ○ ○ ^ ^ ^ 3:x462= 3×2×4 (50点) Cor Dor E となりあわないよう にする =36 先に他のを並べて、 その間を考える!!

解決済み 回答数: 1