学年

教科

質問の種類

数学 高校生

このQのx座標はどうやってだしているんですか? 問題文のケ・コ の部分です!

解説 OC=OB=4, ∠COB = 20より, Cの x 座標は 4cos20=4(cos'0-sin20)=4( 4(1-a²) 1+a2 1+a2 a² 1+a 第1問(数学Ⅱ 図形と方程式, 三角関数) II 1 3 4 5 24 【難易度...★★】 Cのy座標は YA `C (p. a) l:y=ax 4sin208sin Acos0=8・ 8a =1+α2 よって, C の座標は a √1+a² √1+a² O Q 18 A(2, 0) B(4,0) (1Xi) C の座標を (p, g) とおくと, l⊥BCより 9-0 p+ag-4=0 4(1-a²) 8a (⑧⑦) 1+a² 1+a² (2) lは線分BCの垂直二等分線であり, Aは分 の中点であるから,Qは OBCの重心である。 よって, Qのx座標は 4(1-a2)] 1/4+4+te 8 3(1+a a. =-1 P-4 (①) 3 1+a2 また、親分BCの中点(+4, が上にあるので Qのy座標は p+4 1 8a =a 2 2 31+α23(1+α2) 8a ap-g+4a=0 (6) ②よりg=ap+4a, ① に代入して p+a(ap+4a)-4=0 (1+α2)p=4(102) よって, Q の座標は Q(3(1+a²ð), 3(1+a²³)) 8a (3, 0) (3)(2)より 第 (1) (ii) 4(1-a²) p= 1+α² ②より √4(1-a²) +4}= g=a 1+a² 8a 1+α² POB=0 (0<< 2 ) とおくと,tan0 はの傾 きを表すので tan 0=a (0) 8 x= 3(1+a2) 8a y= 3(1+α2) とおくと, >0よりx>0,y>0であり,③④より y n a= x 8 これを③,すなわち x(1+α²)に代入して このとき 1 cos20= 1 1+tan20 1+a² COS0 >0より cos= 3 √1+a2 x 8 8 x2+y2=1203 3x 16 よって, 点Qの軌跡は a sin0=tan0cos= √1+a 中心 ( 143 ) 半径 1/3の円 のy>0の部分である。

解決済み 回答数: 1
数学 高校生

ZP-3 ソタチツ ソタチツがわかりません。前に書いてある誘導にしたがうんだろうなということまではわかったのですが、誘導の言いたいこともわからず、xとt がごちゃこぢゃしてた最終的に0<a<=1/2の時を求めると思うのですが何をしたら良いのかわからず悩んでます。 どなたかす... 続きを読む

数学ⅡI, 数学 B 数学 C 数学Ⅱ 数学 B 数学 [2] (1) α, k 実数とし, αは0でないとする。 ○(k)=f(at-1)at [zat-to/2aピード h(k)=. )=(at (at-1) dt [Lat-t] = 2a-2-(take *) である。 <a=1/2 のとき, f(t)\dt=[ ソ であるから f(t) \dt=37 - 2 a+ ツ 2 94-2 とする。それぞれについて右辺の定積分を計算すると =2a-2-ak-k a> 1> 1/12 のとき,f(t)\dt= = テ であるから a g(k)= k - k S² \ ƒ (t) \dt = ト + ナ a- = a サ である。 セ -g(k) したがって, (*)より α = ヌ となり, f(x) は求められる。 である。 h(k) = 32 (2)次の等式を満たす 1次関数 f(x) を求めよう。 f(x)=xff(t)\dt-1 Solf (t) dt は正の定数であるから *f(t) dt = a(a>0) ソ の解答群 g(2) ①/-g(2) ②ん(2) ③ - h(2) テ の解答群 (*) とおくと, f(x) = ax-1 である。 また,f(x) = 0 を満たすxの値はである。 a ff(t) \dt について考える。 (数学II, 数学B, 数学C第3問は次ページに続く。) A 9 g (1)+(1/1) -(1/2)+(1/1) ® 29 (1) ⑧ 1 -9(1) G 92h (1) <-15-

解決済み 回答数: 2