学年

教科

質問の種類

数学 高校生

79.1 証明を考えるときに、「中線の定理とか中点連結定理が使えるな」と考え、ADを伸ばそうなんて思いつきもしなかったのですが、経験を重ねていけば思いつく、というやつですか? それとも証明内容をそのまま図示(今回だと2ADをそのまま書いてみる)することは考え方の候補として持... 続きを読む

426 基本例題 79 三角形の周の長さの比較 △ABCの3つの中線をAD, BE, CF とするとき (1) 2AD <AB + AC が成り立つことを証明せよ。 (2) AD+BE+CF < AB+BC+CA が成り立つことを証明 せよ。 [CHART 三角形の辺の長さの比較 解答 (1) 線分 AD のDを越える延長上に DA' =AD となる点A'をとると四角 形 ABA'C は平行四辺形となる。 ゆえに AC=BA' △ABA' において TUISHO SET COMM 指針 (1) 2ADは中線 AD を2倍にのばしたものである。 _#WLXOASKORA 中線は2倍にのばす 平行四辺形の利用 右図のように,平行四辺形を作ると (DA'=AD), AC は BA' に移るから, △ABA' において, 三角形の辺の長さの関係 ! (2辺の長さの和)> (他の1辺の長さ) を利用する。 (2) (1) は (2) のヒント 他の中線 BE, CFについても (1) と同様の不等式を作り,それらの辺々を加える。 AA' <AB+BA' よって (2) (1) と同様にして 2AD<AB+AC ...... 練習 ③ 79 (3) 2BE < BC+AB 2CF <CA+BC ①~③の辺々を加えると ゆえに ① 3 ......... D 基本事項 HA TOSCA ①1 角の大小にもち込む 12 2辺の和>他の1辺 P A' OCASE 2 (AD+BE+CF) <2(AB+BC+CA) AD+BE + CF <AB+BC+CA A B B C DAS 00000 D D A' 1855 中線は2倍にのばす C 平行四辺形の対辺の長さは 等しい。 PORTCOU <OS DACEA) 不等式の性質 a<d, b<e, c<f DAL a+b+c<d+e+f 三角形の2辺の長さの和は 他の1辺の長さより大きい 定理) STARTS AN 212863873 (1) AB=2,BC=x, AC =4-x であるような △ABCがある。 このとき、xの ERA の範囲を求めよ。 (2) △ABCの内部の1点をPとするとき、次の不等 [岐阜聖徳学園大 ] 証明せより 基 (1 (2 指針 ! [C 解 (1) て 2 (1 よ と F VE (1 d 検 上 B 練

未解決 回答数: 1
数学 高校生

これ、先にdθ/dx ×(sinθ/1-cosθ)をしてからθで微分すると答え変わるんですが、何でですか?

基礎問 114 64 媒介変数で表された関数の微分 D 第5章 微分法 Ly=1-cos0 x=0-sinf 0で表せ. 精講 変数tを用いてx=f(t), y=g(t) の形で (x,y)が与えられ るとき,t の値が1つ決まると点 (x,y) が1つに決まるので 動かすと点(x,y) が動いて, ある曲線Cができ上がることが [x = f(t) Ly=g(t) 媒介変数表示といいます.(数学ⅡI B45 このような形で表される関数でも,t を消去して「y=(xの式)」の形に れば今までと同じように微分できますが,そうでないときにどうやって微 るのかが今回のテーマです。 まず, 記号の復習です. できます. このとき 次に, d dy ○は「○をxで微分する」という意味ですから, は「yをxで微 d.x dx る」ことを意味する記号です. (00 <2π) で表される関数について また、 d'y は「yをxで2回微分する」ことを意味する記号です. 「2」 dx² dr do いている位置が分子と分母で違うところに注意してください。 次に,微分 ときに使う公式ですが,これはポイントを参照してください. 解答 dy dx dy do dy dy dx' dr をtを媒介変数(パラメータ)とする曲線 =(0-sin0)=1-cose, cy=(1-cose)'=sin0 sino dx 1-cos de [ddy dx²dx sino 1-cos0, 【 注 1 ポイント 注2 do d sino dx de 1-cos 注2 1 1-cos 0 d sin ( dx 1-cos 0) cos0-cos2d-sin20 (1-cos)³ 演習問題 64 x=f(t), y=g(t) と表されているとき, dy dy dt g'(t) d²y dx dx 1 dy (sin 0) (1-cos)-sin 0(1-cos)' (1-cos0)² -60 商の微分 = dy dx この基礎問では, 注1 味ですが、文字が入っていないのにどうやってxで微分するのでしょう か? そこで,次の性質を利用しています. d 0=do. do (=do. do dx dx dx sing do (1-cose)² は、約束によれば, x= cos 0-1 1 (1-cos 0)³ (1-cos0)² d (dy dx f'(t)' dx² dx\dx, dt do は約束によれば, 0 をxで微分するという意味ですが, dx sino 1-cos 0 x=0-sin0 を 「8= (xの式)」の形にできるわけではありません.そこで, 「逆関数の微分」といわれる次の公式を利用しています。 l-t 2t y= 1+ t², 1+12 をxで微分するという意 do 1 として用いています。 dx dx do dy (1) 関数x=y²-2y(y> 1) について, dx (2) 大切な公式 (t=0) について 115 大切な公式 da で表せ. dy d'y dr' dre をtで表せ. 第5章 章 83) (50) ta

未解決 回答数: 0
数学 高校生

x=2.0とあるのにaxのxに代入せずaxは無視していいんですか?

80g 1次関数の決定 (2) 重要 例題 50 関数 y=ax-a+3 (0≦x≦2) の値域が 1≦y≦b であるとき,定数a, ba た場合の感 される 値を求めよ。 CHART & OLUTION MOITU グラフ利用端点に注目 1次関数y=ax+b というと,a=0 であるが,単に 関数というときは, α = 0 の場合も考える。 a=0, a<0 の場 この例題では、1次の項の係数がαであるから a>0, 合に分ける。 得られたαの値が 場合分けの条件を満たしているかどうか検討するのを忘れ ずに。 解答 x=0 のときy=-a+3, [1] a>0 のとき この関数はxの値が増加するとyの値も増加するから,x=2 で最大値 6, x=0 で最小値1をとる。 よって a+3=b, -a+3= 1 これを解いて a=2, b=5 これは, a>0 を満たす。 [2] α=0 のとき この関数は y=3 このとき,値域はy=3であり,1≦y≦b にはなりえない。 [3] α<0 のとき この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 よって -a+3=b, a+3=1 これを解いて これは,α<0 を満たす。 x=2のとき y=a+3 a=-2,6=5 基本43 (a, b)=(2, 5), (−2, 5) -25 [1] YA ba+3 1 [3].y 0 ◆定数関数 1 [1]~[3] から PRACTICE・・・・ 50 ③ J(1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数をル (2) 関数y=ax+6 (6≦x≦6+1) の値域が lit +. a+3 ba+3 a+3 0 関 E 2 X

未解決 回答数: 1