数学
高校生

79.1
証明を考えるときに、「中線の定理とか中点連結定理が使えるな」と考え、ADを伸ばそうなんて思いつきもしなかったのですが、経験を重ねていけば思いつく、というやつですか?
それとも証明内容をそのまま図示(今回だと2ADをそのまま書いてみる)することは考え方の候補として持っておくべきですか?

426 基本例題 79 三角形の周の長さの比較 △ABCの3つの中線をAD, BE, CF とするとき (1) 2AD <AB + AC が成り立つことを証明せよ。 (2) AD+BE+CF < AB+BC+CA が成り立つことを証明 せよ。 [CHART 三角形の辺の長さの比較 解答 (1) 線分 AD のDを越える延長上に DA' =AD となる点A'をとると四角 形 ABA'C は平行四辺形となる。 ゆえに AC=BA' △ABA' において TUISHO SET COMM 指針 (1) 2ADは中線 AD を2倍にのばしたものである。 _#WLXOASKORA 中線は2倍にのばす 平行四辺形の利用 右図のように,平行四辺形を作ると (DA'=AD), AC は BA' に移るから, △ABA' において, 三角形の辺の長さの関係 ! (2辺の長さの和)> (他の1辺の長さ) を利用する。 (2) (1) は (2) のヒント 他の中線 BE, CFについても (1) と同様の不等式を作り,それらの辺々を加える。 AA' <AB+BA' よって (2) (1) と同様にして 2AD<AB+AC ...... 練習 ③ 79 (3) 2BE < BC+AB 2CF <CA+BC ①~③の辺々を加えると ゆえに ① 3 ......... D 基本事項 HA TOSCA ①1 角の大小にもち込む 12 2辺の和>他の1辺 P A' OCASE 2 (AD+BE+CF) <2(AB+BC+CA) AD+BE + CF <AB+BC+CA A B B C DAS 00000 D D A' 1855 中線は2倍にのばす C 平行四辺形の対辺の長さは 等しい。 PORTCOU <OS DACEA) 不等式の性質 a<d, b<e, c<f DAL a+b+c<d+e+f 三角形の2辺の長さの和は 他の1辺の長さより大きい 定理) STARTS AN 212863873 (1) AB=2,BC=x, AC =4-x であるような △ABCがある。 このとき、xの ERA の範囲を求めよ。 (2) △ABCの内部の1点をPとするとき、次の不等 [岐阜聖徳学園大 ] 証明せより 基 (1 (2 指針 ! [C 解 (1) て 2 (1 よ と F VE (1 d 検 上 B 練

回答

Hi(受験生)さま

証明すべき不等式に「2AD」とあるのでADを2倍に伸ばしただけです。
そうすると平行四辺形になること、三角不等式が使えることに気が付く、という流れです。

この回答にコメントする
疑問は解決しましたか?