学年

教科

質問の種類

数学 高校生

数列です。一番最後の問題って単にnについての不等式だとみてそれを解けたりとかできないですよね?回答お願いします。

●2等比数列・ (ア) a, b, cは相異なる実数で, abc = -27 を満たしている.さらに,a,b,cはこの順で等比数 列であり, a,b,c の順序を適当に変えると等差数列になる.a,b,c を求めよ. (宮城教大) (イ) 初項と第2項の和が135で,第4項と第5項の和が40である等比数列{a}の公比は である.ただし各項は実数とする.また,初項が84で,初項から第5項までの和が290である等 ]である.これら2つの数列{a}, {bm}に関して,an>by が成り立つ 差数列{6} の公差は 最小のnの値は である. C (東京工科大・メディア) a, b, c がこの順に等差数列 bn 3項が等差数列, 等比数列になる条件 であるときa+c= 26, また, x, y, zがこの順に等比数列であるとき, πz=y2 が成り立つ (b-a=c-b; 等差数列・等比数列の大小 π:y=y:zより分かる). {a} が等差数列, {bm} が等比数列 (公 比は正)のとき, (n, an) は直線上, (n, bm) は指数関数のグラフ (下に 凸) 上に乗る. 等差数列, 等比数列の各項の大小はグラフを描くと様子 がはっきり分かる. (右図のように, 2交点の間では, 等差>等比) 解答 (ア) a, b, cはこの順で等比数列だから, ac=62 これとabc=-27より, 63-27 ∴.b=-3 cをαで表して, (a, b, c) = (a, -3, 9/α) ..ac=9 以下, 等差数列の条件を考える. 中央項がどれになるかで場合分けする. 9 a 9 2°a+==2(-3) 1° -3+-=2a 9 3° α+(-3)=2• a 1° のとき,2a2+3a-9=0 . (a+3) (2a-3)=0 a = bよりα キー3だから, a=3/2 ..c=6 2°のとき,a2+6a+9= 0 .. α=-3 これは α = 6に反する. 3°のとき, α2-3a-18=0 ∴ (α+3)(a-6)=0 以上から, (a,b,c) = (3/2, 3, 6), (6, -3, 3/2) (イ) {a} の初項をα 公比をとおくと, an=arn-1 a1+az=a+ar=α(1+r)=135 astas=ar3+ara=ar3(1+r)=40] a=6 12 \3 27 82 2|3 123 an 中央項がα, b, c で場合分け. 1° は αが中央項で, b+c=2α と なる. 2° はんが中央項, 3° はc が中央のとき. α=6のとき,c=9/6=3/2 [(イ) 後半の方針] > b は解 ... ける不等式ではない。最小の を求めたいので, n=1,2, … から 順に調べていくのが早い.なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる. より3= ar3(1+r) 40 a (1+r) 135 よって,r=" a=. 2 3' 135 135 -=81 1+r 5/3 b1+65 84+ (84+4d) {6} の公差をd とおく. b1 ~ 65 の和=- ・5= ・・5 が 290 Y 2 2 なので, (84+2d) ・5=290 2\n1 .. 42+d=29 .. d=-13 -y=97-13x y=810 a1 an=-81-1 ·(323), b₂=84–13(n−1) n 1 2 3 4 5 6 7 32 64 an 81 54 36 24 16 3 9 と表よりan>bmとなる最小のnは7. bi b² b3 bbs be at az 03 Sasas b 84 71 58 45 32 19 6 01234567 46 67 48 2

解決済み 回答数: 1
数学 高校生

9の(2)の問題でマーカーが引いてある式はどこから考えたのですか?

4 メジⅠⅡABC受 一方, 解が1≦x≦be y ゆえに、 15 22で、他の解は x=4 (2)与式から 2y-10+(x+3y)√2=0 x-2y-10, x+3yは有理数 あるから は無理数で あるxの2次不等式で, x2の係数がα (<0) で あるものは y=a(x-1xx-b) 01 b x-2y-10=0, x+3y=0 これを解いて x=6, y=-2 すなわち (3) 与式から+3-2xi=1-3y+(3+y)i 3,2x, 1-3y, 3+y は実数であるから x2+3=1-3y ...... ① -2x=3+y a(x-1)(x-b)≥0 ax2-(ab+a)x + ab≧0 ② ①②の係数を比較すると 8 -(ab+a)=' ...... ② ②から y=-2x-3 ...... 3 ①に代入して整理すると x2-6x-7=0 これを解くと よって (x+1)(x-7)=0 工 ゆえに x=-1,7 ③から x=1のとき y=-1 ab=-2 2 a=-= -3 b=3 これはa<0 を満たす。ナスリー 別解 (①を導くところまで同じ) 8 F(x)=ax2+2/3x-2 とおく。 ① を満たすxの範囲が1≦x≦b であるとき, x=1は2次方程式 F(x)=0の解の1つである。 よって, F(1) = 0 から 8 x=7のとき y=-17 したがって (x,y)=(-1, -1),(7,17) 9 (1) 3x-52(x+α) を解くと これを満たす最大の整数 xが8であるための条件 は 8<2a+59 x<2a+5 a+-2=0 2 すなわち a=- 12/3(これはa<0を満たす) すなわち 32a≦4 よって多く 2a+59 3 X 8 このときは12/22 2023x-220 <a≤2 整理して (2) [1] k=0のとき すなわち 不等式は1>0 となり, すべての実数xについ て成り立つ。 ゆえに x2-4x+3≤0 (x-3)(x-1)≦O 1≦x≦3 [2] 08-11 したがって a=-- 2 3' b=3 不等式が常に成り立つ条件は, (左辺 = 0 の判 別式をDとすると k0 ...... ① かつ D0 Jei ここで D=(3k)2-4k(k+1)=k(5k-4) D<0 から 5k-4) <0 よってok ② 4 ①,②からok</ 4 以上から (3) f(x) ≥9(x)+5 ゆずに 10 (1) x3= (x2+2x+4)(x-2)+8 =8 2 x²+1 = (x+1)−3·x±√(x++) 心 =33-3.3=18, 2.x2. **+=(+)-2-x² +1 = (x²+ ±17)² - 2. x². x4 1 -{(x+1)-2-x-12-2 =(32-2)2-2=72-2=47 x+2x+2=1/2x+4 (3)展開式の一般項は すなわち x + fx-220① 3C, (2x2)-(1)=C, 27—1 x 27—1)-

未解決 回答数: 1