学年

教科

質問の種類

数学 高校生

(ク)について質問なのですが、なぜこの場合、二項分布なのでしょうか?二項分布と正規分布の違いも教えて欲しいです!!ネットで調べたのですが、二項分布を性格に書くと正規分布とでて曖昧な理解しか得られてなくて不安です。どなたかよろしくお願いします🙇‍♀️

第5問 (選択問題(配点 16 袋の中に赤球2個と白球4個が入っている。 この袋から 3個の球を同時に取り出 それらの球の色を確認して袋に戻すという試行をTとする。 Tを1回行ったと き、取り出した3個の球のうち赤球の個数をY とする。 第1回 (2)Tを1回行うごとに, Y = 0 であれば3点を獲得し, Y±0 であれば1点を獲得 するとする。 Tを繰り返し50回行ったとき、得点の合計をZとする。 このとき、50回のうち Y=0 となった回数を W とする。 ア ウ (1) P(Y=0)= P(Y-1)= イ エ 確率変数 W は ク に従うので,W の平均はケコ Wの分散は である。 カ Z= シ W + スセ であるから, 確率変数Zの平均はソタ Zの標準 であり。 確率変数の平均(期待値)は オ Yの分散は である。 キ 偏差は チ ツ である。 数学 数学B. 数学C 第5間は次ページにく) ク については、最も適当なものを、 次の①~⑤のうちから一つ選べ。 @ 正規分布 N (0.1) ② 正規分布N 50. ④ 正規分布 N (10.8) ( ① 二項分布 B(0,1) ③ 二項分布B 50, ⑤分 B (108)

解決済み 回答数: 1
数学 高校生

マーカー部分では判別式を使って何を示しているのでしょうか?教えてください🙇‍♂️

例題 112 接線に関する軌跡 放物線 y=x2 上の異なる2点P (1,2), Q(g, q2) における接線をそれぞれ l1, とし,その交点をRとする。 l と l2 が直交するように2点P, Qが動くとき 点Rの軌跡を求めよ。 [類名城大〕 ←例題 108 &2の方程式から交点の座標 (x, y) を求めると,xとyはともに,gの式で表される。 文字 g を消去する したがって, 方針は そこで用いるのは 2直線が垂直←(傾きの積)=-1 185 3 18 答案 x軸に垂直な接線は考えられないから,lの傾きをm とすると,その方程式は y=(x-p) すなわち y=m(x-p)+p2 x2=m(x-p)+p これと y=x2 を連立して 整理すると x²-mx+mp-p2=0 この2次方程式が重解をもつから, 判別式をDとすると D=(-m)2-4(mp-p2)=m²-4mp+4p²=(m-2p)2 P(p, p²) Q(g,g')) li l2 10. x R D=0 から (m-2p)=0 よって m=2p したがって, l の方程式は y=2p(x-p)+p² $73b5 y=2px-p² (1) 同様にして,l2の方程式は y=2qx-q² ②2 交点Rの座標 (x, y) は, 連立方程式 ① ② の解である。 ①をに おき換える。 と yを消去して整理すると 2(p-g)x=(p+α)(カーg) x=p+q J 2 y=2p⋅ b + q = p² = pq == 2 pag であるから これを①に代入して li⊥lz から 2p2g=-1 1 よって y=pq=- 4 また,p, q は 2次方程式 t2-2xt- ...... ③ の判別式を D' とすると D' 4 D = (-x)²-1⋅(-1) = x²+1 4 参考 左の答案は 今までに学習した 知識のみを用いて 接線の方程式を求 めているが,後で 学習する微分法を 用いるとより簡 単に求めることが できる(第6章微 ③ の解である。分法を参照)。 よって D'> 0 逆の確認。 ゆえに、任意のxに対して実数p,q(p≠q)が存在する。 1 したがって, 求める軌跡は 直線 y= =-4

解決済み 回答数: 1
数学 高校生

このまるで囲ってる2・5って何を意味するんですか? 問題は2枚目の⑶です

直線lと円 K: x+y-8x-6y=0 .... ② B の交点A,Bのx座標は,①,②より,yを 消去して得られる方程式 00 x²+(x+5)-8x-6(-1 1 x + 25)=0 の実数解である。これを解くと 3 9x2+(-4x+25)-72x-18(-4x+25)=0 x-8x+7=0 (x-1)(x-7)=0 x=1,7 条件より, 点Aのx座標がx=1,点Bのx座標が x=7 であるから, ①より 4y-3=- 1/(x-4)を展開 せずにそのまま円 K の方程式 (x-4)+(y-3)"=52 に代入 (x-4)2+{-1/(x-1)}= (x-4)²=9 x-4±3 A (1, 7), B(7, -1) y = -. 4 25 x+ 3 A(1, 7), B(7, -1) x=1,7 と計算してもよい。 完答への 道のり 直線OCの傾きから、直線の傾きを求めることができた。 直線lの方程式を求めることができた。 直線 l と円 K の方程式を連立させて、2交点 A,Bのx座標を求める 2次方程式を立てることがで ① 2 交点 A, B の座標を求めることができた。 (3) 点Dは第1象限にあるから, 点Dの座 標は (s, t) (s> 0, t > 0) とおける。 AV △ABD は正三角形であるから AD'=BD=AB2 AD=BD2 より (s-1)+(t-7)=(5-7)+(t+1)2 12s-16t=0 3 t= -s AD2 = AB2 より (s-1)+(-7)=(2-5)2) s2 +t2-2s-14t-50=0 ③④に代入して ③ ? s2+(21s)-2s-14・4/4s-50= 0 s2-8s-32=0 A(1, 7) K \C(4,3) <B (7, -1)+ 2点間の距離 2点(x1,y1)(x2,y2)の間の √(x2-x1)+(y2-yl) 線分ABの長さは円Kの 等しい。 6.8 |16s2+9s2-32s-168s-800 25s2-200s-800 = 0

解決済み 回答数: 2