学年

教科

質問の種類

数学 高校生

最後の方で、絶対値a+bが0以上になってると思うんですけど、0も含まれる根拠を教えて欲しいです。

ベクトルの内積 (213) C1-27 例題 C1.14 内積とベクトルの大きさ(3) **** ベクトルà, 方 が la-6=1, |2a+36|=1 を満たすときの最 大値、最小値を求めよ. 考え方 ab=u2a+36=0 とおくと=10=1+1=1/2(+20) となる。 最大値を求めるのに 絶対値が式のとき ....... 2a+3b=v .......② とおくと ||=1, |v|=1 解答 ①②より、auで表すと文字ありが2つ a+b=u+2v a=3u+v 5 b-v-2u 5 よって, これを表すために 5 を使う ữ ta là | u+2v 5 25 (|u|²+4u v +4|v|²) 1 25 25 www ここで,||||||||より 16+20-12/3 (14+40+416円) (12+4uv+4×12)=- (5+4u-v) 080 ③ ①×3+② より 5a-3u+v ② ① ×2 より 56=v-2u したがって、 ③より1=105 25 01+20より 12/16/20 よって, a +6の最大値 最小値 1 3-5 -1≤u v≤1 |||=1, ||=1 a-b= |a|b|cos -1 cos 0≤1 th, -ab≤ab≤ab ( 内積の性質) 72-2ab+b² = 1 42+ 122 6+96² = 1 うになる。 +2 +22 とは同じ向きで, このとき,|a-6|=|-561=1より16=1/03 la +6=1/2/3 となるのは,=1のときであり、このときとは逆向きで, ||=||=1であるから, u=-v すなわち、 ① ② より ab=-(2a+36) であるから このとき より16=23 今回のように条件を満たす a, が存在することの確認を解答からは省略しているが, 求めた解が題意を満たすかどうかなどは,つねに確認する意識はもっておくとよい 第3章 練習 平面上のベクトルαが24+6=1-36=1 を満たすときの最 B1 B2 = p.C1-32 [12) C1 C1.14 大値、最小値を求めよ. C2 *** 1

解決済み 回答数: 1
数学 高校生

わからないことが2つあります。 ①なんでn>=2の時とn=1の時でわけないといけないのか ②n>=2のときのシグマの上にあるn-1はなにものなのか 教えてください!お願いします。

4 444 基本 22 階差数列(第1階差) 次の数列{a} の一般項を求めよ。 2, 7, 18, 35, 58, 00000 P.439 基本事項 指針数列を作る規則が簡単にわからないときは,階差数列を利用するとよい。 b. a. a. () 数列{a} の 階差数列 を {bm} とすると 解答 (a.): a az a3 a4 {6}: b₁ b₂ bs I- an-1 an bm-1 n≧2のときa=a+2bk k=1 n≧2のときについて、数列{q-} の一般項を求めた後は,それがn=1のときに成り立 つかどうかの確認を忘れないように。 CHART {a} の一般項 わからなければ階差数列{α+1-α } を調べる 数列{az} の階差数列を {bm} とすると {az}:2,7.18,35, 58, {6}: 5,11,17, 23, 数列{bm} は,初項 5, 公差6の等差数列であるから < 2 7 18 35 58 5 11 17 23 +6 +6 +6 bm=5+(n-1)・6=6n-1 n≧2のとき a =Q120k=2+Σ(6k-1) n=1のとき k=1 =2+62k-21 =2+6-(n−1)n-(n−1) =3m²-4n+3 ① 3n²-4n+3=3・14・1+3=2 n≧2に注意。 1 nではない Σbx ことに注意。 x=1 ◄k k=n(+1) での代わりにn-1とお いたもの。 初頭は α = 2 であるから,①はn=1のときも成り立つ。初項は特別扱い したがって an=3n²-4n+3 -1 a n≧1で1つの式に表 される(しめくくり)。 会「n≧2」としないで上の公式a=a+b を使用したら、間違いである。なぜなら、 1 k=1 n=1のときは和 - b が定まらないからである。という和の式があれば、≧ k=1 k= であることに注意しよう。

解決済み 回答数: 1
数学 高校生

まず、確率は誰よりも苦手と言えるくらい悲惨な状況です。その事を理解してもらった上で回答をお願いします🙇‍♀️ この青ラインの所についてですが、何を言っているのかが分かりません。このような質問はあまり良くないことは理解しているのですが、ほんとに分からないので、どなたか猿にで... 続きを読む

ITEM 場合の数 8 同じものを含む順列 チェック! ① (2) (3) ITEM2の 「順列」 は、 全て異なるものの並べ方でした. それに対して,ここでは同じ ものが含まれている場合の並べ方を考えます. ここが「同じもの」をいったん区別して考え公式を覚える ステージ1 原理原則編 場合の数 例題 aaa Do の5枚のカードを1列に並べる方法は何通りあるか. 方針] カード どうし,カード どうしは,区別しないで数えます. 「解答」 カード a 3枚, カード2枚はそれぞれ同じものだから, 求める個数は “割り算”・・・ 5! _5・4・3・210(通り). 3!2! 3.2.2 解説 前 ITEM の 「sC2」の計算と同様, ここでも “割り算” が現れます. その理由も、実は 前 ITEM とまったく同じです. 本間では5枚のカードを aaabb a1 az b1 as b2 a1 az b2 as bi 区別しない 区別しない a ababe という立場で考えなければなりませんが,こ れは直接には “求めづらい”ので, a1 as b1 az bz la ・・・② as az b2 a1 b1 [○○] 区別 [?] のようにどうし,どうしも番号を付し て区別するという別の視点に立ってみます。 すると右図のように①の各々に対して,a, aどうし, bどうし を区別しない aどうし, bどうし を区別する 対応関係を視 6 の番号の違いを考えることで3! 2!通りの②の並べ方が対応します。 ② のように 5 枚全てを区別したときの並べ方は5!通りなので, 求める個数をxとすると, x×3!・2!=5!. 積の法則 求めたい 求めやすい 5! .. x= "割り算” 3!2! 前 ITEM と同じでしたね. [補足] 本間の答えは 5! 5.4.3.2.1 5.4 3!・2! 3・2・1×2! 2! と変形でき,これは前ITEM 例題7 の答え: 6C2 と一致しますね. これは,次のよう にして説明がつきます. cs CamScanner でスキャン 36 → 4.922.32

解決済み 回答数: 1
数学 高校生

どうしてn>=2にするんですか?

の意味」 an+g がある. 133 に関係している. 1次関数y=px+αの x られ、次に,a2 を x=2 =px+gによって、次々 特性方程式について考えて 特性方程式 a=pa+q 考え方 解答 ひく? Omnian brand とおくと an+2an+1=3(Aw+1 am) +2 bm+1=36+2, bm+1+1=3(bm+1) より、 特性 じだけ平行移動して n≧2 のときの したがって、数列{bm+1} は初項12,公比3の等比数列 b"=4.3"-1 bm+1=12・3" =4・3" 方程式だから、 b=az-a=3a1+2+3-a=11 b₁+1=12 -1 1 のように考える. /y=x40~ k=1 k=1 3漸化式と数学的帰納法 (83) B1-65 **** La=3, an+1=3a,+2n+3 で定義される数列{an} の一般項 α を求めよ. 例題 B1.34 漸化式 anti=pan+f(n) (カキ1) [答] 漸化式 n+1= 30+2n+3 において,nを1つ先に進めて as+2 と に関す る関係式を作り,差をとって、(a)に関する漸化式を導く。 2αに加える (または引く)nの1次式pn+g を決定することにより,( {a,+pn+g} が等比数列になるようにする。 an+1=3am+2n+3 ☆ = 30+2(n+1)+3 ②①より、 a+b=3+(4·3-1)=3+ ②は①のにn+1 を代入したもの 差を作り, nを消去 する. ①より, a2=3a,+2+3=14 α = 3α+2 より α=-1 12.3"=4・3・3"-1 =4.3" 第 1 章 12(3"-1-1) (n-1) 3-1. =6・3"-1-n-2=2・3"-n-2 =px+q(y-a=p(x-a)) n=1のとき, a=2・3'-1-2=3より成り立つ よって. an=2.3"-n-2 6・3"-1=2・3・3" - L =2.3" n=1のときを確認 W 軸方向にα y軸方向にα 平行移動 px 解答 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと, an+1=3a,+2pn+2g-p an+1+pn+p+g もとの漸化式と比較して, 2p=2, 2g-p=3より,p=1,g=2 したがって,att(n+1)+2=3(a+n+2), a+1+2=6 より, 数列{an+n+2}は初項 6,公比3の等比数列 =3a+3pn+3g よ り, an+1=3a+2pn +2q-p よって, an+n+2=63"23" より an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式 p(x-a) Focus うが同じグラフ) このαを利用して 差を作り, n を消去して階差数列を利用して考える れを1つ先に進め 注》例題 B1.33 (p.B1-63) のように例題 B1.34 でも特性方程式を使うと, α=3a+2n+3 よ 3 3 5. a=-n- となる.これより,Qn+1+n+1/2=3am+n+ ある。 a)と変形でき, x=px+gの の特性方程式 練習 <数学的背 」として通り 順番になっていない 3 と変形できるが,等比数列を表していないので、このことを用いることはできない。 注意しよう. (p. B1-66 解説参照) a=2,an+1=2am-2n+1 (n=1,2,3, ・・・・・・) によって定められる数列{a}に B1.34 ついて, ** (1) bm=am-(an+β) とおいて、数列{bm}が等比数列になるように定数 αβ の値を定めよ. (2)一般項 α を求めよ. B1 B2 C1 (滋賀大) C2

解決済み 回答数: 1