学年

教科

質問の種類

数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0
数学 高校生

双曲線 なぜPを特殊な置き方すると上手くいくのか、またなぜ自分のやり方では接線が三本求まってしまうのか教えて欲しいです。

62 例題 6.2 双曲線H: 1に点 (21) から引いた接線の方程式と接点の座標を求めよ. 同様に, B=√3 のとき, ② よりα=2. これを①に代入して、求める接線の方程式は、 そのときの接点の座標は, x-y=1 【解答】 <別解> P(4, 3) 直線x=2は求める接線 (のひとつ) であり,このとき接点の座標は (2,0). 点 2 1 を通る直線で, x=2以外のものは とおける. √√√3 (i) k=± 傾き …① 63 Cs (ii) k±2 一のとき,①は耳の漸近線に平行になるので接線になることはない。 のとき、 ①がHに接するための条件は、 ①をHの方程式に代入して得られる方程 式 H上の点P (2α,3β) における接線の方程式は, 3x²-4{k(x-2)+1}^2=12, ・なぜP yxfy=1 ...1 すなわち, ではなくこうおくのか② ・接線 これが (21) を通るので, が重解をもつことなので, ②の判別式をDとおくと (3-4k²)x2+(16k-8k)x-16k+16k-160 B α- ·=1 ・・・② D =0 4 また,PはH上の点なので, '-β2=1 ...③ ②より, α=1+- となるから,これを③に代入して B=0 のとき, ②よりα=1. -β'=1 -(+1) B(B-√3)=0 B=0,√3 これを①に代入して, 求める接線の方程式は, x=2 そのときの接点の座標は, P(2,0) (8k2-4k)-(3-4k²)(-16k²+16k-16)=0 k2(2k-1)^+(3-4k^) (k-k+1)=0 3k-3=0 k=1 これを①に代入して, 接線の方程式は, y=x-1 また、このとき②は(x-4)=0となるので, 重解x=4をもつ よって、 接点の座標は, (4, 3)

未解決 回答数: 1