学年

教科

質問の種類

数学 高校生

72.1 原点Oについての文章は必要ですか? また必要ならなぜ必要なのでしょうか?

[0] 基本例題 12 座標を利用した証明 (1) 食 (1) △ABCの重心をGとする。 このとき, 等式 ABCT)ALLED AB'+BC2 + CA'=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 9 $ (2) △ABCにおいて, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB'+AC2=3AD' +6BD' が成り立つことを証明せよ。 TOLOUR MAT 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。 そのとき 0 31 けで AB この座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため,問題の点がなるべく 多く座標軸上にくるように 0が多いようにとる。 (1) は A(3a, 36), B(-c, 0), C(c, 0) とすると, 重心の性質からG(a,b) (2) l A(a, b), B(-c, 0), C(2c, 0) CHART 座標の工夫 1 0 を多く ② 対称に点をとる Let 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると,| 線分BCの中点は原点0になる。 A (3a, 36),B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB2+BC2 + CA 2 (1) +8+-- =(-c-3a)² +962+4c²+(3a-c)2 +962 ① の場=6a²+662+2c2 ...... 0212 =3(6a²+6b²+2c²) HOMEB 平行四辺 GA2+ GB2+GC 2 (1=(3a-a)²+(36−b)²+(-c-a)²+b²+(c-a)² + b² ② ① ② から AB2+BC2+CA²=3(GA+GB2+GC2) (②2) 直線BCをx軸に点D を通り直線BC に垂直な直線を y軸にとると,点Dは原点になり, A (a,b), B(-c, 0),( (20) と表すことができる。 24+ (x + (11) M よって 2AB'+AC'=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+b²)+4c²−4ca+a²+6² 2)2 2007 =3a²+3b²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から 基本 71 ② B (-C,0) 2AB²+AC²=3AD²+6BD² +3,0 0-8 A 基本 85 EA(3a, 36) 0 (G (a,b) (c, 0) x y A(a, b) (E) 4 B12- (-c, 0) OD a(s) 2−)Ɔ (^_{}ª_{{I_DA Mɛ (1) 3DSMATRROS:8,9% 音の点をPとする。このとき,等式 117 (2c, 0) x ET 3章 12 直線上の点、平面上の点

回答募集中 回答数: 0
数学 高校生

141.2 どこか記述に問題あったりしますか?

222 基本例題 141 三角比を含む対称式・交代式の値 √2 2 sin0+ cos0= (1) sin Ocose, sin'0+ cos' 0 解答 指針▷ (1) の sin @cos 0, sin+cos' 0 はともに, sin 0, cos 0 の対称式 (p.32, p.50 参照)。 →和sin0+cos 0 積 sin Ocos0の値を利用して, 式の値を求める。 ......... (1)(sin Acos 0)条件の等式の両辺を2乗すると, sin²0+ cos20 と sin Ocos0 が現れ る。 かくれた条件 sin ²0+ cos20=1 を利用。 >6>0 [0€K<<== /2 (1) sin0+cos0= の両辺を2乗すると 2 sin²0+2sin@cos0+cos²0=1/2 (0° 0 <180°) のとき, 次の式の値を求めよ。 (2) sino-cose, tan0- ゆえに よって また (sin'0+cos30) a²+b^²=(a+b)(a²−ab+b2)を利用。 (2) sin-cose については、 まず (sin 0- cos 0)' の値を求める。 0°<B <180° と (1) の結 果から, sin0-cos 0 の符号に注意。 = よって②から sinocos0=-- sin³0+cos³0 = (sin 0+cos 0) (sin²0-sin cos 0+ cos²0) 30 -√(1-(-1))-5√/2 (2)0°<<180° では sin0>0であるから, ① より cos0<0 ゆえに sin0-cos0 > 0 ② ①から (sin0-cos0)^=1-2sin/cos0= 12/10 -√²/²=4 tan 0- 1 sin0-cos0= 1 tan 0 = .. 1+2sinocos0= ① sin cos 0 cos o sin 8 (sin0+cos0) (sino-cos 0) sin²0-cos²0 sinocoso 00000 sinocos0 [類 広島修道大] 1 tan 0 √2 - 42.16+ (-1)=-2/3 √6 = -2√3 |基本 27,140 ab や '+b²のように, a と を入れ替えてももとの式と 同じになる式を, a bの対 称式という。 <「‥.」 は 「ゆえに」 を表す記 号である。 ◄sin³0+cos³0 = (sin0+cos0) 3sin/cos0 (sin0+cost) から求めてもよい。 - 1/ <0. sinocos0=- sin0>0であるから cos 0 < 0 sin 0 cos 0 <tan0= sin 0, cos 0 の式に直す。 求めた sin @cos 0 sin0-coseの値を利用。 を利用して,

回答募集中 回答数: 0