学年

教科

質問の種類

数学 高校生

なぜS3mなんですか??教えてください!!

例題 26 無限等比級数(1) 周期性のある数列 **** 2n an=sin 3 π (n=1, 2,......) とするとき,無限級数の和Σ- An n=1 10" を求 こ めよ. 考え方 に 1,2,3,...... n 1 2 3 4 5 23 2 4 πT **2* 83 πC 103 π と具体的な値を入れて、 α の規則性を考えればよい. 4π n=1,4,... YA 6 23_ 2n sin- √3 √3 -π 3 2 32 √3 √√3 0 0 4. TU 2 10 3π n=3,6,... x n=1,4,…,3m-2のとき n=2,5, n=3,6, wwwww 2n √3 sin π= 2n 23 23 23 n=2,5,... + (I). 2 (x+1) カトル級数) === 3m-1のとき sin 27=-√3 OR 2n 3m のとき sin- [メルカトル 0は自然数)となっている. +鉄粉)となっている 解答 mを自然数とすると, (0人) + sin 2n √3 √3 π= (n=3m-2), (n=3m-1), 0 (n=3m) 2 2 となり、数列{o}(n-1)は, √3 √3 +1√3 √3 0, 0, 156 2・102' ※2・104' (3-2) 番目の項だけを考えると, 初項 2・10' 2・105' √3 公比 2.10' の等比数列となり, 103 √3 (3-1) 番目の項だけを考えると,初項 公比 2102' 103 の等比数列となる. m したがって,初項から第n項までの部分和をS, とすると,n=3m のとき, 300km √3 1 \1 √3 3m k=1 2.10 103 2.102 103 √33 となり1より lim S3m 2.10 2・102 5√3 1 1 111 √3 m また, S3m+1=S3m+ 2.10 ①②より, lim S3m+1= limS3m +25 →∞ 1-0 3 103 m m 11. S-SS-+-10(10) 210(10) 5 a 2.10 an n=1 10" 5√3 111 =(aを11で割った余り) (n=1, 2)と定義された 103 3m+2 √3 13m 5√3 111 より200

未解決 回答数: 0
数学 高校生

どうして2回の試行を行っているのに反復試行を使っていないのでしょうか?あと、(2)の確率分布表のPが3/1になるのはどうしてですか? 解説お願いします🙇

10箱の中に1から3までの数字を書いた球がそれぞれ1個ずつ、計3個入っている。 この箱の中から1個の球を取り出すことを2回行う。 (1)1回目に取り出した球を元に戻して2回目を取り出す場合 1回目、2回目に取り出した球に書かれた数字をそれぞれX 023 とする。x=2 11 ア ウ X=1 となる確率はP(X=1- Y=2 となる確率はP(Y=2)= であり, イ I オ X=1 かつ Y = 2 となる確率はP(X=1, Y=20) = である。 また、確率変数Xとは キ 12 23 7x344 2x = +5x= キ に適するものを、次の① ② のうちから一つ選べ。 ① 独立である 独立でない 1+2+3 このとき, X, XY の期待値 (平均) はそれぞれE(X) E(XY= であり, X, X+Y の分散はそれぞれV(X) V(X+1)= ス である。 1/123 (12) +2x3+5% 14449-4 (1-2)/32+(2-2-2)^(1/3 +1/+1 (2)1回目に取り出した球を元に戻さずに2回目を取り出す場合 1回目, 2 回目に取り出した球に書かれた数字をそれぞれ X', Y' とする。 X' = 1 となる事象を A, Y' =2となる事象をBとすると, セである。 また,E(XY)である。 ①②③ セ の解答群 123 α=1,A M Y=2B (1/2) ( WF 14 ① 事象A と事象 Bは独立 2 事象 A と事象 Bは従属 ソ に適するものを、次の①~③のうちから一つ選べ。 ② ~ P(A) = P(x-1)=1 / PBB) = Pα==== P13 2+216 ③ 36計 x12361

回答募集中 回答数: 0