学年

教科

質問の種類

数学 高校生

普段から図形は書いた方がいいですかね? こういう系の図がへったくそで時間食っちゃうので書かないんですが、書くコツありますか? この問題ではどんな図になるか教えて欲しいです🙏

3iを単位とし、COS・ +isin とする。 (1) イであり、 3n ウイである。 (2) n = (21) カー1 -1 あり、 (3) コである。 また、 (2n-1)-1, n-1 である。 K+ である。 ギ ケで 2 lafe 25× (25点) 14を自然数とし、関数fn (z) =logx (0) とする。 座標平面上の曲線 =jn (z)上の点(a,∫(q))における接線が、座標平面の原点を通るという。 ただし、 log は自然対数を表し、文中のeは自然対数の底を表す。 回 (1) 接線の傾きは |ア + である。 (2)In-fn(x)dx とすると tge el f (3)領域Dの面積は チ シテ 日 シテ である。また、領域Dをェ軸のまわりに1回転させてできる立体の体積は ヌネ ホ ノハヒ ノハヒ である。 f(x) A (x)'g+x (25点) = -n x™ logx tx="x" -n-t グリッx+x -n-I (-vlx+1) い af() x 必ず!! x=a, 9=an log a 3 f alog ath lay a =ah log a + fa 1 Z 2 1 1 z) (1+z) 1 1-2 1 + 1-z 2 1 1+222 + +2z2 ) (1+z²) 21_5 + = 2 1 + 4+ 2 →ス・ 2 T セ Nor 力 ケコ タ 1₁ = 110 = オ キク サシス である。 n=5とする。このとき, 曲線Cと接線およびェ軸によって囲まれた領域 (境界 を含む)をDとする。

解決済み 回答数: 1
数学 高校生

1枚目の下から3行目以降がどうしてそうなるのか分かりません。至急、教えて頂きたいです!🙇🏻‍♀️🙇🏻‍♀️

0がと をもつときを考 第4問 (1) 1日で売れる量は 1/12 Mで2日目 3日目は売れた分の精肉を仕入れるだけ でよいから, a1= M より a2=M- - M = M a3=M-12M=12M また、3日目の閉店後に1日目に仕入れた精肉は廃棄されているが, 2日目 3 日目に仕入れた精肉はそれぞれ (1/2) 12-1/M a2= + = +M だけ残っているから ・M a₁ =M-(M+M)- M +e+ (+) (+ そして,(n+2) 日目の開店時に用意されている精肉は日目に仕入れた精肉が (1/2) an= = 1/an (n+1)日目に仕入れた精肉が であり、 (+)-1 2 an+1 (n+2) 日目に仕入れた精肉が an+2 日 量 であり、その量の合計はMであるから 10 = 60 an+2+1/12/2 1+1/an=M an+1+ ① が成り立ち 同様に an+1=M が成り立つから,② ① より =0 さい解をも であることか an+3 1/14n+2-1/14n+1-1/80 an=0 an+3= 12/24n+2+1/21an+1+1/an これる。 すなわち ③より an+3= 1/an+/12/2(an+2+1/21ant1+1/8am) an+M G+3-M-(-4M) an+3 であり,Cm=am-M とおくと Arte Cn+3=1/28cm であるから, 自然数kに対して C3k-2 は k-1 k-1 C₁ = ゆえに .6- ② Y<X 1部) .0% ①を利用して +2 +1 を 消去する方針。 方程式 1/11+1/Mの 解は、x= =Mである。 この式の形から「C1, Ct, ...」, 「C2,C5,…」「3, 6, ...」 のそれぞれについて考える必 要がある a-a-M-M

解決済み 回答数: 1