学年

教科

質問の種類

数学 高校生

これってどうしてベクトルAA’がベクトルaにならなきゃいけないんですか?

DOO AB、 00000 平面上に原点から出る, 相異なる2本の半直線 OX, OY (∠XOY < 180°上に 要 例題 27 角の二等分線とベクトル それぞれ0と異なる2点A, B をとる。 (1)a=0A, 6=OB とする。 点Cが XOY の二等分線上にあるとき, 実数(0) とα で表せ。 (2) XOYの二等分線と XAB の二等分線の交点をPとする。 OA=2, 0B=3,AB=4のとき, OPをa と で表せ。 [類 神戸大] 基本 24 (1)ひし形の対角線が内角を2等分することを利用する。 OA' =0B'=1となる点 A', B' そんな半直線 OA, OB上にとり, ひし形 OA'C'B' を作ると, 点Cは半直線 OC' 上にあるOC=FOC (t≧0) (2)(1)の結果を利用して,「OPを2通りに表し、係数比較」 の方針で。 P は XABの二等分線上にあるAA'=aである点 A' をとり、(1)の結果を使うと, AFは,で表される。 OP=OA+APに注目。 ここのベクトルは 423 →ひし形になる→同じ大きさ(おわり) 答 と同じ向きの単位ベクトル それぞれ OA OB' とすると 1章 4 位置ベクトル、ベクトルと図形 Y B 別解 (1) XOY の二等分 線と線分AB との交点Dに 161 C OA'== OB'= 対し, AD: DB=|a|: |6| か B' lal Dal C 5 OD=> OA'+OBOC とすると,四角形 0-A' AX a 6 OA+a OB |a|+161 ab a+ OA'C'B' はひし形となる。 Tal a+ba b 点Cは, XOY すなわち ∠A'OB' の二等分線上にあるか ら、半直線OC' 上の点である。 点Cは半直線OD 上にあるか 5 OC=kOD (k≥0) ab よって、実数(≧0)に対し OCHOC=t (+) そこで -k=t とおく。 (2)点P は XOYの二等分線上にあるから, (1) より OP=t 132 + 3 これを解いてs=8, t=6 3 したがって OP =3a+26 AA'である点 A' をとると、点PはXAB の二等分線上 にあり、AP=s AB AA' (≧0) であるから + AB AA OP=ON+AP=d+ (6=2+2)-(1+1+1/6 Taxであるから 1/12=1+1/4/1 1-1 Ta+16 Y. tzo ar Bis 大きさが 違う 4. 3 072-A-2-AX 単位ベクト 使 練習 △OAB において,|OA|=3, |OB|=2, OA・OB=4とする。 点Aで直線OAに 27 接する円の中心Cが∠AOBの二等分線上にある。 OC をOA=d, OB= で [ 類 神戸商大 ]

回答募集中 回答数: 0
数学 高校生

(2)について なぜ側面の塗り方は数珠順列ではなく、円順列なのですか?

PR 第1章 場合の数 209 立方体の各面に、隣り合った面の色は異なるように, 色を塗りたい。 ただし, 立方体を回転させ 21 て一致する塗り方は同じとみなす。 (1)異なる6色をすべて使って塗る方法は何通りあるか。 (2)異なる4色をすべて使って塗る方法は何通りあるか。 (1) 上面の色を1つ固定すると,下面の塗り方は 5通り そのおのおのに対して, 側面の塗り方は,異なる 4個の円順列で区別 できる (4-1)!=3!=6(通り) (1) 1色で固定 展開図 (上面を除く) 下面 1章 PR PP 210 面の塗り方は異なる2個の円順列に等しく (2-1)!=1!=1(通り) 長方形の 125 よって、異なる6色をすべて使って塗る方法は 5×6=30(通り) 6つの面を異なる4色で塗るには, 1組の向か い合う2面を1色で塗り, もう1組の向かい合う 2面を別の1色で塗る。 4色から2組の向かい合う面に塗る2色の選び方 八重は4C2=6(通り) 長方 異なる色 側面は円順列 上下の面の色が異なるから, じゅず順 列ではない。 HINT (2) 回転させると一致する場 合があるから注意。 同色で 固定 色んな色 2組の向かい合う面の色を固定すると、残りの2 共 MAHOES 同色で 固定 固定すると同 まわしたとき かぶってほう ACTUACIOMAHA 2!通りではない。 のとき よって、異なる4色をすべて使って塗る方法は [1 2 6×1=6(通り) (回転させると一致する) 35-15( () 04-8+Se n (n≧2) を求めよ。 通りあるか。 ed

回答募集中 回答数: 0
数学 高校生

⑵の丸をつけたところってどうやって考えてるんですか?

40 第1章 数列の極限 29 +I (1) 不等式 ことを示せ . (2) > 22 +1 21 +1(n=2,3,・・・)が成り立つことを証明し, 1 無限級数 1+1/2 3 (1) kは自然数であるから, k+1>k より k>0 より, √k+1 k また, kが自然数より, であるから, 1 √k+1+√k したがって, ①,②より, √k+1 √k k k ここで, 1 n=¹√√n+1+√√n 1 √k+1+√k =√n+1−1 したがって, n=1√√n+1+√√n √2+1 よって, ③, ④より, jvn+1 n=1 n (2) n≧2 のとき, =1+ +...... + 1 √k kは自然数)が成り立つことを証明し、2 の部分和 S は, S₂=(√2-1)+(√3-√√2)+(√4¬√3) +…..... 2 3 + 2 √k+1 >√k √k k 14 =1+2 1 1 2 1 -=limS"=lim(√n+1−1) 11-0 √k+1+√k >√k>0 >1+ 1+1/1/2+(1/+1/1) 1 +······ は発散することを示せ,030-100 n √k+1+√k √k+1-√√√k (k+1)-k = √k+1=√k // 11-00 =8 ......④ -=∞ となり、 発散する. √k -X2+ = 2+1 したがって, n≧2のとき +... +1)+(1/ ...... ② + + 5 X ......+(n+1-√n) X4 1 1 6 7 + 8 1 2"-¹+1 1 1 1 + + + 8 8 8 8 +......+ 2" 2"X2"-1 + √√n+1 n 2" が発散する 1 =店より、 LE- きる. より、一般項が vn+1 より小さく,正の無 n 限大に発散する無限級数とし 例題29 (本編 p.76) と同 1 が利用で ==1₂√√n+1+√√n 追い出しの原理 0.18-0.0072 |第2'' +1項から第2項まで で区切って考える。 |2"-2" '=(2-1)2"-1 より 2個である. がn個

回答募集中 回答数: 0
数学 高校生

格子点の問題の解き方を教えて欲しいです!

ともに整数で 並ぶから、 る。 いた よび内部である。 (1) 領域は、右の図の赤く塗った三角形の周お 直線y=k (n-1, ......, 0) 上には, 0 (2n−2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 基本 16 (2n-2k+1)=(2n-2.0+1) k=0 =n²+2n+1=(n+1)² (1) n +(-2k+2n+1) =2n+1-2・1/23n(n+1)+(2n+1)n y4 k=1 n. 0 n =(n²+1)+(n²+1)Σ1−Σk² x+2y=2n k=1 y n n-1 線分x+2y=2n(0≦y≦n) 上の格子点(0, n), (2, n-1), ....*', (2,0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), 06 (n+1) 個 (0, n) を頂点とする長方形の周お よび内部にある格子点の個数は (2n+1)(n+1) (対角線上の格子点の数) ゆえに、求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) (*) =(長方形の周および内 部にある格子点の数) よってN=1/12 ((2n+1)(n+1)+(n+1)=1/27(n+1)(2n+2)=(n+1)^(個) (2)領域は,右の図の赤く塗った部分の周および内部であ る。 直線x=k(k=0, 1,2, YA n-1, n) 上には, ²k2+1) 個の格子点が並ぶ。 よって, 格子点の総数は Σ(n²−k²+1)=(n²-0²+1)+Σ(n²+1−k²) ==(n+1)(6(n²+1)-n(2n+1)} =(n+1)(4n²−n+6) (13) k 1 0 JU [+2+A01+³A01- 1 2 2n =(n+1)+(n+1)-1/12n(n+1)(2n+1) =(n+1)(n²+1)-1/1/n(n+1)(2n+1) -y=-11/2x+n (x-2n-2y) 2n-2k 2n-1 2n-21 2n k=0 の値を別扱いした -2Ek+ 0 = -2.1/n(n+1) Σk+(2n+1)Σ1 n² n²-1 n²-2 k² k=0 +(2n+1)(n+1) でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。よって ( 求める格子点の数) ×2 y=x2 k=1 391 0 1 R n 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から,領域 外の個数を引く。 ors (2) 0≤x≤n, y≥x², y≤2x² 1章 x 3 PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。 ただし, nは自然数と する。 (1) x20, y≥0, x+3y≤3n 種々の数列

回答募集中 回答数: 0