学年

教科

質問の種類

数学 高校生

平面ベクトルについて質問です。 【2】でf(-1)f(1)≧0となっていますがどちらもせいになる場合、どこかでy軸0と交わる点が出てくるのではないかと思いました。教えて頂きたいです。

東京 新課程 リードα 化学量 322 数学B 91-402 今生 (nb+mc)-(-mb+nc)=0 Tok -mn/bf-(m²-n²) b-c+mnlcf=0 であるから 6-c=0 (2) AEL DF であるから よって ゆえに <ポイント> 文字をおいて 式をたてる m0.n>0.man であるから 7. であるから AE-DF=0 EX △ABCの辺BC, CA, ABの中点をそれぞれ D, E, Fとする。 △ABCの内部に点をとり 分 OA, OB, OCの中点をそれぞれP, Q. Rとするとき. 3 直線 DP. EQ, FRは1点で 22.0t 17 わることを証明せよ。 OA=4,OB=6, OC = とすると (m²-n²)b-c=0 00+ OE- OF_a+b 2. 2 OP-4.00-4. OR- OT=OE+0Q 2 ABLAC よって,線分 DP, EQ. FR の中点をそれぞれS, T. Uと すると OU_OF+OR 2 OS=OT-OU 05-06+0³ 16+c+2)_+6+è OD+OP OS= 2 --- 4 a+b+c <p = -1/2) = ²² 4 1 (ētā + (+5+)_+6+à OR=rOA+(1-1)0Q ****** 2 うちけん =rat1246..... ① 条件から OP=ta, OQ=-1-6 QR: RA=r: (1-r) (0<r<1) とす ると 4 PR: RB=s: (1-s) (0<s <1) とすると OR=(1-s) OP+sOB =(1-s)ta+sb 0 ○ ←AE-DF 1 (m+n)² (nb + m²) -(nc-mb) -045 (nb+mc) (-mb+nc)- の位置を B b B・ ゆえに よって, 線分 DP, EQ, FR のそれぞれの中点は一致するから. ←3点S, T.Uの位置 ベクトルが一致。 3 直線 DP, EQ, FRは1点で交わる。 P EX 平面上に長さ3の線分 OA を考え, ベクトル OA をaで表す。 0<t<1 を満たす実数に対し 18 (東北大) このとき,どのように0をとっても OR と AB が垂直にならないようなtの値の範囲を求めよ。 a 求めたい すようにとり。 B を OB = で定める。 線分 OBの中点をQとし,線分 AQ と線分BP の交 点をRとする。 F Q ( A D R. DE PQ 12 長さが同じ 平行であるこ てから FA なす角が< 8 <180° であるから 60 であるから. ①.②より 1-1=s =(1-s) t. 2 (0<t<1) [HINT] QR: RA=r: (1-7). PR: RB=s: (1-s) とし OR を2通りで表 す。 OR·AB=(2—¿ª+¹−16)·(6−à) axb =2²7 (−tlāß+(1−1)|B³+(2+−1)ã•b} =2-{-9t+4(1-t)+6(2t-1)cos B} =26(2t-1) cose-13t+4} 2-1 0 ゆえに 求める条件は、任意の8 (0° < 8 <180°) に対して、 ここで 0<t<1であるから +1a1-3. 151-2 のとき 62t-1) cos 0-13t+4≠ 0 が成り立つことである。 -1<p<1 ここで COSB=かとすると よって、f(p)=6(2t-1)p-13t+4 とすると. -1<p<1を満た ゆえに よって ゆえに ←△AOQBPに ついて、メネラウスの定 理を適用してもよい。 OB AP 器・照·賜=1 BQ RA よって すすべてのかについてf (p) = 0 が成り立つようなt の値の範囲 を求めればよい。 11/1/2のと 0<t</1/23 1/12 <t<1との共通範囲は st</, /<<t<1 2 [1] [2] から 求める t の値の範囲は 一同じ符号ならok、 P(-1). 2 1-t FOR 122=1 f(p=-12 であるから.f(p)≠0 を満たす。 [2] OKI</1/11/12 <<1のとき f(p) は1次関数であるから, -1<p<1を満たすすべてのか についてf(p) 0 が成り立つための条件は f(-1)ƒ(1) ≥0 (-25t+10) (-t-2) 20 (5t-2)(+2)≧0 ts-2. / st 1章 OR=OA+2(1-1)0Q +2(1-1) st<1 ] [平面上のベクトル) QR RA=1:2(1-t) raj U EX ta+(1-1)5 2-1 ←0°<8180°のとき -1<cos@<1 ←f(-1)=0 または f(1)=0 または 「f(-1) f(1) が同符号」

回答募集中 回答数: 0
数学 高校生

bが3分の10になる途中計算を書いて欲しいです。

1次関数の決定 (1) 基本例題 43 Ap.70 基本事項 2.3 次の条件を満たす1次関数を,それぞれ求めよ。 (1) グラフが傾き2の直線で, x軸と x=3で交わる。 (3) 定義域が 2 <x≦5, 値域が-1≦y<5 (2) x=-1 のときy=4,x=2のときy=2をとる。 CHART OLUTION y=f(x)のグラフが点(s, t) を通る ⇔t=f(s) 求める1次関数はy=ax+b の形で表される。 (2)a,bについての連立方程式を作る。 (3) 定義域の端の値,値域の端の値に着目。……] x=5, y=-1 は変域に含まれる。 →点 (5, -1) を通る。 解答 求める 1次関数はy=2x+6 と表される。 そのグラフが点 (30) を通るから b = -6 ゆえに よって、求める 1次関数は y=2x-6 求める 1次関数はy=ax+6 と表される。 x=-1のときy=4 から のときy=2 から x=2 2 これを解くと 3' よって 求める1次関数は 10 b= a=-- 3 4=-a+b 2=2a+b a=-2,6=9 これを解くと よって 求める1次関数は 0=2.3+b = 重要 50 2 10 -²x+3 ◆傾き2の直線。 ◆ x軸との交点 AJUSTH (0) 3) 求める1次関数はy=ax+b と表される。 変域に x=2 と y=5は含まれず, x=5 と y=-1 は含ま れることから, そのグラフは2点 (2,5),(5,-1)を通る直 線の一部である。 (25),(5,-1) をy=ax+b に代入すると 5=2a+b, -1=5a+b y=-2x+9 (2<x≦5) → y座標が 0 ←-a+b=4 ...... 2a+b=2 0-2:-3a=2 2章 (2 7 x2+②:36=10 PRACTICE・・・ 43 ③ 次の条件を満たす1次関数を,それぞれ求めよ。 (1) x=0 のときy=-1, x=2のときy=0 (2) グラフが2点(-12 (36) を通る。 関数とグラフ ■変域の端が含まれている かどうかに注意。 2点 (2,-1),(5, 5) を通る 線ではない。 定義域も明記する

未解決 回答数: 0
数学 高校生

x=2.0とあるのにaxのxに代入せずaxは無視していいんですか?

80g 1次関数の決定 (2) 重要 例題 50 関数 y=ax-a+3 (0≦x≦2) の値域が 1≦y≦b であるとき,定数a, ba た場合の感 される 値を求めよ。 CHART & OLUTION MOITU グラフ利用端点に注目 1次関数y=ax+b というと,a=0 であるが,単に 関数というときは, α = 0 の場合も考える。 a=0, a<0 の場 この例題では、1次の項の係数がαであるから a>0, 合に分ける。 得られたαの値が 場合分けの条件を満たしているかどうか検討するのを忘れ ずに。 解答 x=0 のときy=-a+3, [1] a>0 のとき この関数はxの値が増加するとyの値も増加するから,x=2 で最大値 6, x=0 で最小値1をとる。 よって a+3=b, -a+3= 1 これを解いて a=2, b=5 これは, a>0 を満たす。 [2] α=0 のとき この関数は y=3 このとき,値域はy=3であり,1≦y≦b にはなりえない。 [3] α<0 のとき この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 よって -a+3=b, a+3=1 これを解いて これは,α<0 を満たす。 x=2のとき y=a+3 a=-2,6=5 基本43 (a, b)=(2, 5), (−2, 5) -25 [1] YA ba+3 1 [3].y 0 ◆定数関数 1 [1]~[3] から PRACTICE・・・・ 50 ③ J(1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数をル (2) 関数y=ax+6 (6≦x≦6+1) の値域が lit +. a+3 ba+3 a+3 0 関 E 2 X

未解決 回答数: 1