学年

教科

質問の種類

数学 高校生

積分の問題です。 黄色マーカーで引いたところの解説をお願いします

基礎問 220 第6章 積分法 120 回転体の体積 (V) 曲線 y= (vi-va) (x≧0, a>0) について,次の問いに答えよ. (1) この曲線のグラフをかけ. (2) この曲線と y=α によって囲まれた部分を直線y=a のまわりに 1回転してできる体積を求めよ. (1) 75 をもう一度読みかえしてみましょう. 今回は, 極値 を求める必要がありますから, y' は因数分解することになります. .......... それならば,このまま微分した方がよいでしょう. (2)今まで学んだ回転体の体積は、回転軸がx軸かy軸でした。今回は、y=a です.いったいどのように考えればよいのでしょう。 目標は, 「回転軸をx 軸に重ねる」ことです. 精講 (1) x>0 のとき y'=2(√x - √a). (√x - √a)=x^² (√x - √a) 1-√a =1- 解答 x→+0 ->0 I √a 2x√x よって, グラフは下に凸で,増減は表のようにな り, limy'=-8, limy =∞ よりグラフは右図. 218 0 ... a y' 4 a 0 + V 20 (2) 曲線と直線y=α の交点のx座標は (√x - √a)² = a√x - √√a = ± √a √x=0, 2√a :: x=0, 4a 8/4 a 10 x=0のとき、 y'の分母= 0 となるので a 注 limy' を調べているのは, y' が x=0 で定義されていない, すな x→+0 わち, 微分可能でないからです. このことは, グラフにおいて点 (0, a) でy軸に接するようにかかれている部分でいかされています。 IC 求める体積Vは〈図Ⅰ>の斜線部分を直線y=a のまわりに回転させ! た立体の体積だから、この図形を軸の正方 向に-4だけ平行移動した <図II〉の斜線部 (141) 分をx軸のまわりに回転すればよい。 "". V=1 = πf^^{(√x - √a)²-a³dx = n₁²(x-²√a √x)²dx 演習問題 120 *4α = nſ₁² (x² − 4√a x² + 4ax) dx ポイント x³ 8√a 5 5 8.25 = π[3³ = nα² (43 4³ 242 15 = ・+2・4 5+2.4²) -ла³(10-24+15) -x²+2ax² πa³ 14g YA 0 a 221 32 15 数学ⅡI・B48 ポイントによれば, 平行移動の公式は次の通り。 注 y=(√x-a-a y=f(x) をx軸の正方向にp,y軸の正方向に qだけ 平行移動すると, y-q=f(x-p) となる. Anx 回転軸がx軸やy軸でないとき, 平行移動して回転軸を軸や軸に重ねる (1411) 4 エ y=cosx のグラフと, 点 (0, 1) と点 (2m, 1 ) を結ぶ線分で囲ま れた領域を直線y=1のまわりに1回転してできる立体の体積V を求めよ. 79 第6章

回答募集中 回答数: 0
数学 高校生

微分の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 第5章 微分法 148 81 微分法の不等式への応用 (1) <>0のとex> 1/2+x+1 が成りたつことを示せ。 (2) limx=0を示せ . (3) lim xlog.x=0 を示せ. +0 精講 (1) 微分法の不等式への応用は数学ⅡIB 96, 数学ⅡI・B 97 で学習 済みです。 考え方自体は何ら変わりはありません。 (2) 78,(3)は演習問題 79 にでています。 大学入試で,これらが必要になるときは, Ⅰ. 直接与えてある (78) ⅡI. 間接的に与えてある (演習問題79) ⅢI.証明ができるように、使う場面以前に材料が与えてある (81) のいずれかの形態になっているのがフツウですが,たまに,そうでない出題も あります。 だから, この結果は知っておくにこしたことはありません. もちろん、証明 の手順もそうです. (1) や (2) 不等式の証明 (3) 極限という流れは 44,45で 学んだはさみうちの原理です. 解答 (1) f(x)=e³- (エ) (12/2+x+1) とおく. f'(x)=e*-(x+1), ƒ"(x)=e³-1 x>0のとき, ex>1 が成りたち, f"(x) >0 したがって,f'(x) は x>0 において単調増加. ここで,f'(0)=0 だから,x>0のときf(x) よって, f(r) は x>0 において単調増加. ここで, f(0)=0 だから, x>0 のとき、f(x)>0 ゆえに, x>0 のとき, e> ¹> {√x²+x+1 y=er上の点(0, 1) における接線を 参考 求めると, y=x+1 になります。 こ のとき,右図より y=e²y=x+1 より上側にあります。だから, x>0 では >x+1, すなわち, f'(x) > 0 であることが わかります. (2) x>0 0²¾, (1)* _e²> {/x²+x+1> {/√ x ³² 0<x<²/2 …". 0<><>²+²x+2=0<<x+2+³ .. I lim (-tlogt)=lim += 0 t→+0 1-0 et また, lim (-tlogt)=lim (tlogt) t→+0 演習問題 81 lim -= 0 だから, はさみうちの原理より lim- 2 →∞ I 注解答では,+1を切り捨てていますが, そのままだと次のように なります. t +0 ポイント く (3) (2)において, x=log / とおくと,t+0 のとき→∞ ‡t, e²= elox+= 1, x=-logt だから, t+0 limtlogt=0 すなわち, lim xlogx = 0) x→+0 lim -=0 I→∞ P (1) x>0 のとき (2) lim loga →∞ IC 2 log. X -= 0 を示せ . I -1 x>10gを示せ. 3/4 0 y=e* 149 y=x+1 lim -=0 lim xlog.x=0 I-00 x→+0 第5章

回答募集中 回答数: 0
数学 高校生

極限の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 90 第4章 極 51 数列・関数の極限(L)(b)別リアル) X X X X X ? L ① (2) BR る. (1) 一般項am をnで表せ. 数列 {an} は, a1= =1/12/1 .. (2) Sm= Can をnで表せ. k=1 精講 (n+2)an+1=nan (n=1,2, ・・・) をみたしてい (3) lim (S)" を求めよ.ただし, lim 11-00 典型的な極限の問題です. (1) は数学Bの範囲ですが, 漸化式のなかでは, 難しいほうに入りま す。(数学ⅡI・Bの基礎問では扱っていません) そこで,次のパターンを覚えておくことになります。 (an+1=f(n) an (f(n): 分数式) 型漸化式の解き方〉 2 (1+1 ) ² = e ak+1 ak (3)のただしがきにある 「lim (1+1/2)"= →∞ 72-00 -= =f(k) として,kに1,2,.., n-1 を代入して辺々かける。ただし =e」 は受験生が正しく使えない公式の 代表格ですが,大切な公式です。 使い方にコツがあるので, ポイントをよくみ てください 解答 (1) (n+2)an+1=nan より ak+1 k ak k+2 A₂ A³ a₁ az 1,2,.... n-1 を代入して, 辺々かけると n≧2のとき, 「い冷合わせるため を用いてよい。 an 1.23 an-1 3 4 5 n−2_n_l n n+1 an 2 = よって, as n(n+1) F-t, a== n(n+1) (a₁ = 1/29) これは,n=1のときも含むので, かけ終わりかけ 初めより, n-121 これから n≧2 辺々かける an n(n+1) (別解)(かなり速いのですが、理解しにくいかもしれません) (+2)an+1=nan の両辺に n +1 をかけると, (+2)(n+1)an+1=(n+1)nan ゆえに, 数列{(n+1) nan) は, 初項 2.1.a=1, 公比1の等比数列. よって, n(n+1)an=1 iha (2) (数学ⅡIB119) Sn= = ²₁R (k² + 1) = ² ( 1/² - x + 1) = 1 (3) (S.)-(1)-("+¹)*((₁+²) = tim (S.)*=lim{(1+2)^- 11-00 ポイント 演習問題 51 .. an= 1 (別解) (S)"=(1- 1) において,(n+1)=N とおくと, -N-1 △→∞ (S.)-(1+) -(1+)*(1 + 2 ) " - ((₁ + + ) * T * (₁ + 2 ) " N n→∞ のとき, N- ∞ だから, lim (S.)" =— Jim_{(1 + + )"}*(¹ + ) ¹ = 0 ²¹ = 1/ n→∞ e + (1) lim 1 n(n+1) =e (△はすべて同じもの) 次の極限値を求めよ. 2n no 2n+1) 1 n n+1 n+1 ² = = e = ¹ = ² ( (数学ⅡI・B64 指数の計算) 1 注 この公式は「△→±∞」で成りたちます. 0 91 (2) lim (1+- 71-00 2n 第4章

回答募集中 回答数: 0
数学 高校生

 古文の品詞分解が得意な方は大歓迎します。  2021年度第1回全統共通テスト模試国語第3問(古文)の『源氏物語』について。  問題文の第2段落・第2段落内1~2行目・全体6~7行目の『「ひとり住みは、 …(略)… こよなう心澄みぬべきわざなりけり」』の「かくて身を ~ わ... 続きを読む

第3問 次の文章は「源氏物語』「幻」巻の一節で、光源氏が最愛の妻である紫の上に先立たれて寂しく過ごしているところに、 息子である大将の君が見舞いに訪れた場面である。これを読んで、後の問い (問1~5)に答えよ。 (配点 50 ) くもま な はなたちばな (注2) ⑦さうざうしきに、十余日の月はなやかにさし出でたる雲間のめづら 五月雨はいとどながめ暮らし給ふよりほかのことなく、 しきに、大将の君、御前にさぶらひ給ふ。花 橘の月影にいときはやかに見ゆる、かをりも追ひ風なつかしければ、「千代を馴ら せる声もせなむ」と待たるるほどに、にはかに立ち出づるむら雲のけしきいとあやにくにて、いとおどろおどろしう降りくる 雨に添ひて、さと吹く風に灯籠も吹きまどはして空暗き心地するに、「窓を打つ声」など、めづらしからぬ古言をうち誦じ給へ ふるごと るからにや妹が垣根におとなはせまほしき御声なり。 をのこ 「ひとり住みは、ことに変はることなけれど、あやしうさうざうしくこそありけれ。深き山住みせむにも、かくて身を馴らは したらむは、こよなう心澄みぬべきわざなりけり」などのたまひて、「女房、ここにくだものなどまゐらせよ。男ども召さむも ことごとしきほどなり」などのたまふ。心にはただ空をながめ給ふ御気色の尽きせず心苦しければ、「かくのみ思し紛れずは、 (注6) 御行ひにも心澄まし給はむことかたくや」と、見たてまつり給ふ。「ほのかに見し御面影だに忘れがたしましてことわりぞ かし」と思ひ給へり。 (注5) おぼ 「昨日今日と思ひ給ふるほどに、御果てもやうやう近うなり侍りにけり。いかやうにか掟て思し召すらむ」と申し給へば、「何 ばかり世の常ならぬ事をかはものせむかの心ざしおかれたる極楽の曼陀羅など、 このたびなむ供養ずべき。経などもあまたあ (注8) まんだら りけるを、なにがし僧都、皆その心くはしく聞きおきたなれば、また加へてすべき事どもも、かの僧都の言はむに従ひてなむも (注9) のすべき」などのたまふ。「かやうの事、もとよりとりたてて思し掟てけるは、うしろやすきわざなれど、この世にはかりそ めの御契りなりけりと見え給ふには、形見といふばかり留め聞こえ給へる人だにものし給はぬこそ、口惜しう侍れ」と申し給へ ば、「それは、彼ならず命長き人々にも、さやうなる事のおほかた少なかりける、みづからの口惜しさにこそ。そこにこそは 第2回 たま (23) (注3) おき

回答募集中 回答数: 0
数学 高校生

黄色マーカーで引いたところが分かりません。 どうして公比が1なのですか?

基 90 基礎問 51 数列関数の極限()()別リアル) 第4章 数列{an} は, a1=1,(n+2)an+1=nan (n=1, 2, ...) をみたしてい る. (1) 一般項an をnで表せ. 精講 (②2) Sn=a をnで表せ. k=1 (3) lim (S.)* * *³ *. *ÆL, lim (1+1)" = e n→∞ 118 ∴. 典型的な極限の問題です. (1) は数学Bの範囲ですが, 漸化式のなかでは,難しいほうに入りま す。(数学ⅡI・Bの基礎問では扱っていません。) そこで,次のパターンを覚えておくことになります. (an+1=f(n) an (f(n): 分数式) 型漸化式の解き方〉 meを用いてよい。 Qk+1=f(k) として,kに1,2,... n-1 を代入して辺々かける. (ただし, n≧2) ak (3)のただしがきにある「lim (1+1/2)^ 1\n 71-00 代表格ですが,大切な公式です。 使い方にコツがあるので、ポイントをよくみ =e」 は受験生が正しく使えない公式の 解答 (1) (n+2)an+1=nan より ak+1. k ak k+2 k=1,2,.., n-1 を代入して, 辺々かけると n≧2のとき, 「い合わせるため an 1.2.3 an 3 4 5 a₁ az an 2 = a₁ n(n+1) よって, an=- これは,n=1のときも含むので, かけ終わりかけ 初めより, n-1≧ これから n ≧2 辺々かける n-2n-1 n n+1 1 n(n+1) (a₁ = = ² * y) 注 1 an n(n+1) (別解)(かなり速いのですが、理解しにくいかもしれません) (n+2)an+1=nan の両辺に n +1 をかけると, (+2)(n+1)an+1=(n+1)nan ゆえに, 数列{(n+1)nan) は,初項 2.1.α=1,公比1の等比数列. よって, n(n+1)an=1 (2) (数学ⅡⅠIB 119 S.-2A(+1)=2(+1)=1-1-1 k+1/ (3) S." (7)-(+1)^-{(1+1)}' n+1\-n (S)"= = kik(k+1) -1 .. lim (S.)-lim ((1+1)=²¹=1 e 71-00 ポイント 演習問題 51 72-00 .. -N-1 1 an n(n+1) (別解) (S)"=(1-1)において,(n+1)=N とおくと, =(1+1)=(1+1/2)*(1+2)^'={(1+1/4)}*(1+1)^ n→∞ のとき, N- ∞ だから, lim (S.) - Jim ((1+)*(¹+¹== N-∞ NT-CY lim (1+1)=e A ±00⁰ (1) lim (△はすべて同じもの) 次の極限値を求めよ. 2n (数学ⅡI・B 64 指数の計算) この公式は「△→±∞」で成りたちます. n O 91 13 (2) lim (1+1/12 ) 2n 7118 第4章 2

回答募集中 回答数: 0
数学 高校生

黄色マーカーで引いたところが分かりません。 なぜ判別式が0以上になるのですか?

基礎問 8 第1章 式と曲線 2 円(Ⅱ) JX.CJ だ円 P(x,y)をとり,点Pでの接線 ② 2直線y=1, および, x=2との交点 をそれぞれ, Q, R とする. 点 (2, 1)をAとし, AQRの面積をSとお く.このとき、次の問いに答えよ. (1) +2y=kとおくとき, 積 141 をkを用いて表せ. (2) Skを用いて表せ. (3) PC上を動くとき, Sの最大値を求めよ. (1) 点Pはだ円上にあるので,12+4y²=4 (>0,y>0) をみた しています。 (2) AQRは直角三角形です. (3) のとりうる値の範囲の求め方がポイントになります. 解答は2つありま すが、1つは演習問題1がヒントになっています. 解答 精講 (1) の部分をCで表す。 曲線C上に点 +y²=1のx>0,y>0 mi²+4y²=4 1 (21+2y1) -4.miy=4 x₁y₁= k²-4 4 (2) P(x,y) における接線の方程式は +4yy=4 Q(4-44₁, 1), R(2, 4-20₁ I 4y₁ よって, AQ=2- 4-4y_2cc1+4y-4 X1 X1 AR=1-4-2.12.x+4y-4+2y-2 4y1 y 4y₁ 2y₁ ∴S= S=1/12 AQAR= (+2y-2) __ 2(k−2)2 2x₁4₁ k²-4 Q P x=2 y=1 R 2 x MAT 2(k-2) k+2 x₁+2y₁=k y を消去して (3) (解Ⅰ) (演習問題1の感覚で・・・) | vi'+4y1²=4....① 判別式≧0 だから、 演習問題 2 ・=2- ポイント x₁²+(k-x₁)²=4 2²²2-2k+k²-4=0 8 k+2 k²-2(k²-4) 20k²-8≤0 : -2√2 ≤k≤2√2 また、右図より 11 より だ円 よって, 2<k≧2√2 が最大のときSは最大だから, Sの最大値は6-4√2 |=2cos0 より (0<< とおける. ly = sin0 ∴.k=z+2y=2(sinQ+cos0)=2√/2 sin (0+7) 40+ だから、 // <sin (+4)=1 3π 4 4 √2 ∴.2<k .. 2<k≤2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 +. VB' (0-1) =1 上の点は a² x=acos0y= bsin0 とおける 9 だ円 +g=1と直線y=-1/12+k(k:定数)は,異なる2 点PQで交わっている.このとき, 次の問いに答えよ. (1) 定数kのとりうる値の範囲を求めよ. (2) 線分PQの中点Mの軌跡の方程式を求めよ. 第1章

回答募集中 回答数: 0