数学
高校生

黄色マーカーで引いたところが分かりません。
どうして公比が1なのですか?

基 90 基礎問 51 数列関数の極限()()別リアル) 第4章 数列{an} は, a1=1,(n+2)an+1=nan (n=1, 2, ...) をみたしてい る. (1) 一般項an をnで表せ. 精講 (②2) Sn=a をnで表せ. k=1 (3) lim (S.)* * *³ *. *ÆL, lim (1+1)" = e n→∞ 118 ∴. 典型的な極限の問題です. (1) は数学Bの範囲ですが, 漸化式のなかでは,難しいほうに入りま す。(数学ⅡI・Bの基礎問では扱っていません。) そこで,次のパターンを覚えておくことになります. (an+1=f(n) an (f(n): 分数式) 型漸化式の解き方〉 meを用いてよい。 Qk+1=f(k) として,kに1,2,... n-1 を代入して辺々かける. (ただし, n≧2) ak (3)のただしがきにある「lim (1+1/2)^ 1\n 71-00 代表格ですが,大切な公式です。 使い方にコツがあるので、ポイントをよくみ =e」 は受験生が正しく使えない公式の 解答 (1) (n+2)an+1=nan より ak+1. k ak k+2 k=1,2,.., n-1 を代入して, 辺々かけると n≧2のとき, 「い合わせるため an 1.2.3 an 3 4 5 a₁ az an 2 = a₁ n(n+1) よって, an=- これは,n=1のときも含むので, かけ終わりかけ 初めより, n-1≧ これから n ≧2 辺々かける n-2n-1 n n+1 1 n(n+1) (a₁ = = ² * y) 注 1 an n(n+1) (別解)(かなり速いのですが、理解しにくいかもしれません) (n+2)an+1=nan の両辺に n +1 をかけると, (+2)(n+1)an+1=(n+1)nan ゆえに, 数列{(n+1)nan) は,初項 2.1.α=1,公比1の等比数列. よって, n(n+1)an=1 (2) (数学ⅡⅠIB 119 S.-2A(+1)=2(+1)=1-1-1 k+1/ (3) S." (7)-(+1)^-{(1+1)}' n+1\-n (S)"= = kik(k+1) -1 .. lim (S.)-lim ((1+1)=²¹=1 e 71-00 ポイント 演習問題 51 72-00 .. -N-1 1 an n(n+1) (別解) (S)"=(1-1)において,(n+1)=N とおくと, =(1+1)=(1+1/2)*(1+2)^'={(1+1/4)}*(1+1)^ n→∞ のとき, N- ∞ だから, lim (S.) - Jim ((1+)*(¹+¹== N-∞ NT-CY lim (1+1)=e A ±00⁰ (1) lim (△はすべて同じもの) 次の極限値を求めよ. 2n (数学ⅡI・B 64 指数の計算) この公式は「△→±∞」で成りたちます. n O 91 13 (2) lim (1+1/12 ) 2n 7118 第4章 2
数学3

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉