数学
高校生

黄色マーカーで引いたところが分かりません。
なぜ判別式が0以上になるのですか?

基礎問 8 第1章 式と曲線 2 円(Ⅱ) JX.CJ だ円 P(x,y)をとり,点Pでの接線 ② 2直線y=1, および, x=2との交点 をそれぞれ, Q, R とする. 点 (2, 1)をAとし, AQRの面積をSとお く.このとき、次の問いに答えよ. (1) +2y=kとおくとき, 積 141 をkを用いて表せ. (2) Skを用いて表せ. (3) PC上を動くとき, Sの最大値を求めよ. (1) 点Pはだ円上にあるので,12+4y²=4 (>0,y>0) をみた しています。 (2) AQRは直角三角形です. (3) のとりうる値の範囲の求め方がポイントになります. 解答は2つありま すが、1つは演習問題1がヒントになっています. 解答 精講 (1) の部分をCで表す。 曲線C上に点 +y²=1のx>0,y>0 mi²+4y²=4 1 (21+2y1) -4.miy=4 x₁y₁= k²-4 4 (2) P(x,y) における接線の方程式は +4yy=4 Q(4-44₁, 1), R(2, 4-20₁ I 4y₁ よって, AQ=2- 4-4y_2cc1+4y-4 X1 X1 AR=1-4-2.12.x+4y-4+2y-2 4y1 y 4y₁ 2y₁ ∴S= S=1/12 AQAR= (+2y-2) __ 2(k−2)2 2x₁4₁ k²-4 Q P x=2 y=1 R 2 x MAT 2(k-2) k+2 x₁+2y₁=k y を消去して (3) (解Ⅰ) (演習問題1の感覚で・・・) | vi'+4y1²=4....① 判別式≧0 だから、 演習問題 2 ・=2- ポイント x₁²+(k-x₁)²=4 2²²2-2k+k²-4=0 8 k+2 k²-2(k²-4) 20k²-8≤0 : -2√2 ≤k≤2√2 また、右図より 11 より だ円 よって, 2<k≧2√2 が最大のときSは最大だから, Sの最大値は6-4√2 |=2cos0 より (0<< とおける. ly = sin0 ∴.k=z+2y=2(sinQ+cos0)=2√/2 sin (0+7) 40+ だから、 // <sin (+4)=1 3π 4 4 √2 ∴.2<k .. 2<k≤2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 +. VB' (0-1) =1 上の点は a² x=acos0y= bsin0 とおける 9 だ円 +g=1と直線y=-1/12+k(k:定数)は,異なる2 点PQで交わっている.このとき, 次の問いに答えよ. (1) 定数kのとりうる値の範囲を求めよ. (2) 線分PQの中点Mの軌跡の方程式を求めよ. 第1章
数3

回答

まだ回答がありません。

疑問は解決しましたか?