学年

教科

質問の種類

数学 高校生

ベクトルの問題です。 模範解答と違う解き方なのですが、これでも良いのでしょうか?不足があれば解説していただけるとありがたいです。

重要 例題 33 内積と三角形の形状 △ABC が次の等式を満たすとき, △ABCはどのような形か。 (1) AB AC JAC 00000 (2) AB・BC=BC・CA=CA・AB 基本30 三角形の形状問題 2辺ずつの長さの関係 (2辺の長さが等しい, 3辺の長さが等しい など), 2辺のなす角 (30° 45° 60 90°になるかなど) を調べる。 線分の長さ、角の大きさを調べるには, 内積を利用する。 (1) JACP-AC-AC (AB-AC)-AC=0 (内積)=0垂直 (2) 2組ずつ, すなわち AB・BC=BC・CA, BC・CA=CA・ABについて調べる。 1つ 目の等式でBC-(AB-CA)=0 ここで, BC を AC-ABに分割する。 CHART 線分のなす角、長さの平方 内積を利用 (1) AB AC=ACから 解答 ゆえに AB・AC-AC・AC=0 (AB-AC) AC =0引ける AC-AC-AC 637 台 (1) AB-AC=CB であるから CB・AC=0 CB = 0, AC ±0 であるから CBLAC すなわち CBLAC したがって, △ABCは ∠C=90°の直角三角形である。どの角が直角になるかも (2) AB・BC=BC・CA から 明記しておく。 BC (AB-CA)=0 よって (AC-AB)・(AB+AC) = 0 BC=AC-AB. ゆえに JACP-AB=0 TA=-AC よって JAC=AB| すなわち AC=AB... ・① BC・CA=CAAB から, 上と同様にして BC=AB ・・・・・・ ② AB=BC=CA ① ② から したがって, △ABCは正三角形である。 No. Date TAB /a50-1921 7050. AC したかって AB L(=90°0325785 A B. (2) <CA(BC-AB)=0 (BA-BC)-(BC+BA) =0 |BA=IBCP よって BA=BC FB = CA 1 章 4 位置ベクトル、ベクトルと図形 AB=CA 同様に、BC=AB.CA=BC よって 正三角形

解決済み 回答数: 1
数学 高校生

青の所がどうなっているのか解説お願いします🙇‍♂️

95 接線の本数 曲線 C: y=x-x上の点をT(t, t-t) とする. (1)点Tにおける接線の方程式を求めよ. (2)点A(a, b) を通る接線が2本あるとき, a, b のみたす関係式 を求めよ. ただし, a > 0, b≠α-a とする. (3)(2)のとき,2本の接線が直交するようなα, bの値を求めよ. a=0 1g(0)g(a)=0 a=0 (a+b)(b-a+α)=0 < α≠0 は極値をもつ ための条件 b≠a-a,a>0 だから, a+b=0 (3) (2) のとき (*)より, t2(2t-3a)=0 3a 2本の接線の傾きはf'(0), (22) だから,直交する条件より f'(0) (3a .. 8 =-1 a²=-27 _2√6, (-1)(2762-1)--1 「 a>0より, a= 2√6 b=- 9 9 精講 (2) 3次関数のグラフに引ける接線の本数は, 接点の個数と一致し ます. だから、(1)の接線にA(a, b) を代入してできるt の3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注で学習済みです. (3)未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので, あと1つですが, それが 「接線が直交する」 を式にしたものです. 接線の傾きは接点における微分係数 (83) ですから, 2つの接点における 微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3.-1 よって, Tにおける接線は, y-(t³-t)=(3t2-1)(x-t) ∴y=(3t-1)x-2t3 (2)(1) の接線はA(a, b) を通るので b=(3t2-1)a-2t3 :.21-3at+a+b= 0 ...... (*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at+a + b とおくとき, y=g(t) のグラフが, 極大値, 極小値をもち, (極大値)×(極小値) = 0 であればよい. g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから ・極値をとるためには2つ必要は0ではない (a 0) 点Aを通る接線が2本ある 接点が2個ある 185 接点が2個ある時の3次関数の特徴は? 大値 or 極小値が0をとる。 . よって 極大値×極小値 0 が成り立つ。 y=x³-x A(a,b), 94注 参考 ポイント 3次関数のグラフに引ける接線の本数は 接点の個数と一致する 実は,3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 3次曲線Cの変曲点 (88) における接線をと するとき, ・斜線部分と変曲点からは1本引ける ・Cと上の点(変曲点を除く) からは2本引ける ・青アミ部分からは3本引ける IC 演習問題 95 曲線 y=x-6x に点A(2, p) から接線を引くとき, 次の問いに 答えよ. (1) 曲線上の点T(t, ピ-6t) における接線の方程式を求めよ. (2)ptで表せ (3) 点Aから接線が3本引けるようなかの値の範囲を求めよ.

解決済み 回答数: 1
数学 高校生

172.2 このような解法で答えを求めたのですが、記述式の問題だとしたとき、赤下線部のような記述をしても問題ないですかね??

ろえると計算し 24=log:2 = ! 3にそろえる (底を5に 解法) (与式) logs 52 logi logs 3 log. (logs'+1 log x216 logs3 基本例題 172 対数の表現 OOO (1) 10g23=a, log35=b のとき,log210 と 10g15 40 を α, b で表せ。 [名城大] 1 (2) 10gxa= 10gxb=- logxc= 24 のとき, 10gabcxの値を求めよ。 (log, blog るとよい。 ご利用してよい [久留米大] (3) a,b,c を 1でない正の数とし, 10gab=α, log.c=β, logca=y とする。 このとき, aβ+βy+ya= 1 1 1 + + が成り立つことを証明せよ。 a B Y 1 3' 指針 (1) 10,15,40をそれぞれ 分解して, 2,3,5の積で表すことを考える。 log210=10g(2.5)=1+log25 底の変換公式を利用して,10g また, 1015 40 は, 真数 405・23 に着目して、 2を底とする対数で表す。 1 ここで ! また (2) 10gabcx= である。 10gxabcの値を求める。 logx abc (3) 右辺を通分すると, 分母に αby が現れる。これを計算してみる。 を開発し 解答 (1) log210=log2 (2-5) = log₂2+log25=1+log25 t (@zolo) log3 5 = log23.log35=ab log32 よって log25= 8 log210=1+ab log1540= 10abcx= log240_log2(5.23) log215 log2 (3-5) ab+3 a+ab (2) logxabc=logxa+logxb+logxc= よって logxabc 1 1 1 aβ+βy+ya + + a B Y aby であるから ① より ab+3 a(b+1) =2 aßy=logablog.clogca=10gab. 1 1 1 + + B Y したがって、等式は証明された。 _log25+3 log23+log25s 1 1 1 + + 3 8 24 2 = (1) loga C.. loga bloga c =1 ◄log32= =aβ+βy+ya が成り立つ。 10g23 前ページ検討も参照。 ページ Foto 21 logo log (s) 基本171 で表す。コ b log25=ab (前半から) Exgol (3) 別解 したがって (左辺) aβ=logablog.c=10gac 同様に βy=10gba ya=logcb =logac+log.a+logcb 1 1 + + Y a B ETI 練習 ③ 172 (2) a, bを1でない正の数とし, A=log2a, B=logzbとする。 a,bが (1) logs2=a, logs4=6とするとき, 10g158 をa, bを用いて表せ。 loga 2+10gb2=1,10gab2=-1, ab=1を満たすとき, A, Bの値を求めよ。 [(1) 芝浦工大, (2) 類 京都産大〕 p.272 EX110 269 5章 30 数とその性質

解決済み 回答数: 1