学年

教科

質問の種類

数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0
数学 高校生

(2)(イ)の考え方が分かりません

基礎問 精講 今目で 135 場合の数と漸化式 (1)5段の階段があり、1回に1段または2段 登るとする。このとき,登り方は何通りある か。ただし、スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1)と同じようにn段の階段を登る方法が の画 an通りあるとする.このとき (ア) α1, a2 を求めよ. n≧1 のとき, an+2 を an+1, an で表せ (ウ) αg を求めよ。 211 (イ) 1回の登り方に着目して(n+2) 段の階段を登る方法を考えると次 の2つの場合がある。 ① 最初に1段登って, 残り (n+1) 段登る ② 最初に2段登って、残り段登る ①,②は排反で, (n+1) 段登る方法, n段登る方法はそれぞれ an+1 通り, an通りあるので, an+2=an+1+an an+2=an+1+an (ウ)(イ)より, い as=a+α6=(a6+αs)+α6 =2a+αs=2(as+α)+as =3a5+2a=3(a+α3)+2as =5a+3a3=5(as+az)+3as =8a3+5a2=8(az+ai)+5az (1) まず, 1段, 2段, 2段と登る方法と2段, 1段, 2段と登る 方法は、異なる登り方であることをわかることが基本です。次に, ると=1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. わらないかんそこで, 1と2をいくつか使って,和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります。 (2)(イ)これがこの135 のメインテーマで, 漸化式の有効な利用例です。考え 方は、ポイントに書いてあるどちらかになります. この問題では,どちらで も漸化式が作れます。 (ウ)漸化式が与えられたとき, 一般項を求められることは大切ですが、漸化 式の使い方の基本は番号を下げることです。 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段2段 参考 =13a2+8a=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領でas を求めると, α5=3a2+2a=3×2+2=8 (通り)となり, 1) の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります。 ① まず(n + 1) 段登って, 最後に1段登る ②まず段登って、 最後に2段登る ポイント 場合の数の問題で漸化式を作るとき、次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 3回使う組合せは,1段, 1段, 1段, 2段 演習問題 135 3+4+1=8 (通り) (2)1段登る方法は1つしかないので, a=1 5回使う組合せは,1段, 1段, 1段, 1段,1段で それぞれ,入れかえが3通り,4通り、1通りあるので 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの 色をぬる. 赤が連続してはいけないという条件の下で、ぬり方が an通りあるとする. (1) a1, a2 を求めよ. 2段登る方法は,1段,1段と2段の2通りあるので,a=2 (2) an+2 を an+1, an で表せ . n≧1のとき, (3) α8 を求めよ.

回答募集中 回答数: 0
数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

(2)で黄色い付箋が貼ってあるところの「ここで〜となり」の範囲を確認している部分がなんそうなっているのかわかりません。後右ページ上から2行目から3行目の計算の仕方がわかりません

基礎問 110 面積(M) 放物線y=ax2-12a+2 (0<a</ ......① を考える. y=uv y 14042 ay2+y-2(2α+1)=0 ..(y-2) (ay+2a+1)= 0 .. y=2, −2-17= 201 a a -20-=-2-4 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. (2) 放物線①と円 2+y2 =16・・・ ② の交点のy座標を求めよ. (3)a=1/12 のとき,放物線 ①と円 ②で囲まれる部分のうち、放物 精講 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が, aの値にかかわらず通る 定点を求めるときは、式をαについて整理して,aについての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, 座標が必要でも,まず』を消去してyの2次 方程式にして解きます。 (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので, 中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります.もちろん、 境界線に放物線が含まれるの で,定積分も必要になります。 ここで, 2</1/12より-2-1/2-4となり,円+g=16 上の点 _1は不適よって, y=2 y=-2- (3)a=1/12 のとき,①は y=1/1 (1)(2), ①,②の交点は (A(2√3,2), B(-2√3, 2) AOB=120° だから 2√3 S=2.5" {2-(1-1)) は-4≦y≦4 をみたす y 4 2 B4.... A d.x +(x-4³. 120-4-4-sin 2) +(7.42.120 360 12/3 16 3 --+6]+6x-4√3 =24√3+12√3+1-4√3 6 16 =4√3+10% x -1 解答 (1) y=ar2-12a+2 より ポイント a(x²-12)-(y-2)=0 <aについて整理 これが任意のαについて成りたつので 2-12=0 y-2=0 x=±2√3,y=2 演習問題 110 よって, ① がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2.....① (2) |r2+y2=16 ......② ②より, z=16-y だから, ①に代入して 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 2次関数 f(x)=x'+ax+b が条件f(1)=1, f'(1)=0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, bの値を求めよ. (2)y=f(x)のグラフと曲線Cで囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ. JmHe

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基礎門40(3) 解説を読んでも理解出来ませんでした💦詳しく教えてください🙇‍♀️

68 第3章 40 逆関数 (2)とするとき。 次の問いに答えよ。 (y=f(x)の逆関数y=f(x) を求めよ.バー) ② 曲線 C:y=f(x) と曲線 Ca:y=f'(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C. の交点の座標の差が2であるとき, aの値を求めよ。 〈逆関数の求め方〉 (012) ( y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかえればよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる eto Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。 この基礎問では,IIが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より,値域は y≧-1 ここで,両辺を2乗して, 1大切!! ax-2=(y+1)2 . a x=1/2(y+1)+1/2 (y-1) 2 a *>, ƒ³¹(x) = 1½ (x+1)²±²² (x≥−1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが、xの値に対してyを決める規則が関数で すから、xの範囲,すなわち, 定義域が「すべての実数」でない限り は,そこまで含めて「関数を求める」と考えなければなりません. ey=f(x)とy=f(x)のグラフは、凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0