学年

教科

質問の種類

数学 高校生

最後の「よって」からの計算の977という数字が、489を2倍して1引いたものだということは分かったのですが、何故2倍して1引くのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

8 (66) 第1章 数 列 Think 例題 B1.30 群数列(2) **** 2の累乗を分母とする既約分数を次のように並べた数列について、 1 13 5 7 1 3 5 16' 1 3 2'4'4'8'8'8'8' 16' 16' (1) 分母が2" となっている項の和を求めよ. (2)初項から第1000項までの和を求めよ. 15 1 16'32' * ← p. 手 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (分母) 2,4,4,8,8,8,8,16,1616, 16, 16, 16, 16, 16, 1個 2個 4個 8個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると, 第2群に 分母が2" の分数が2個あることがわかる.さらに,分子に着目すると, ..... (分子)1|13|1,3,5,713,5,7,9,11, 13, 15………… となっている。 10 解答 (1) 分母が 2 である分数をまとめて第ん群とする数 列を考えると, 1 1 3 1 3 5 7 1 3 5 15 1 24'48'8'8'816'16'16' 16 32 となり、分母が2" の分数は2個あり,分子は初 わけられている 等差数列の和 1. 公差2の等差数列になっているから,その和 は, Sn= n(ate) 2 を利用 1+3+5+…+(221-12-2 (2) 各群の項数は, 1, 2, 48, 16, ・・・・・・より 2" -=2n-2 分子 1+3+5+...... 2" S 第n群までの項数の和は、 1 (2"-1) 2-1 =2"-16 2°_1=511,2-1=1023より 第1000項は第 10群の第489項なので、求める和は第9群までの 和と第10群の第489項までの和となる. k=1 9 よって, 2-2 1 3 '+ + 210 20+......+. 977 SOI+ 1 (29- -1) 2 1 - + 2-1 210 2 2 -489-(1+977) 511 4892 500753 + 2 1024 1024 + (2・2"-1_ 2" (1+2.2-1-1) =22n-2 2 第1000項が第何群に っているかをまず調べる 9 1/2. 公園 22-2は初項 2の等比数列の初項が 第9項までの和 1+3+ ...... +977は, 初項 1,末項 977, 頭数 489 等差数列の Focus 分数の群数列は分母,分子に着目して見抜く 1/6 習 [30] * 数列 (1) 2-3 1-3 '2'3'3 1-2 2-2 +1136- 13 は第何頭か . 3-3 1 3'4 23 4 1 4'4'4'5 5/5 (2) 初項から第1000項までの和 ………について

解決済み 回答数: 1
数学 高校生

この問題の赤線部分なんですが、2aのaは初項だから第n群の初項を入れればいいと思うんですが、赤線で囲った式だとあくまで第n群の初項が全体の数列の何番目かを示す式であって第n群の初項の具体的な値ではないと思うんですが、なぜ2aの部分に入れられるのですか?教えてください。

550 基本 例題 112 群数列の応用 1 2 3 45 初項から第210項までの和を求めよ。 6 7 8 1'2'2'3'3'3'4'4'4'4 10 9 11 5 [類 東北学院大〕 ・の分数の数列について 基本 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1/2,2/3, 3, 3/4,4,4,4/5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子:1/2,3/4, 5, 6/7, 8, 9, 10 | 11, ...... 分子は, 初項 1, 公差1の等差数列である。 すなわち, もとの数列の項数と分子は しい。 まず, 第210項は第何群の何番目の数であるかを調べる。 解答 分母が等しいものを群として,次のように区切って考える。 8 9 10|11 45' 12 34 5 6 7 12'23'3'34'4'4' もとの数列の第項は分 子がんである。また、第 群は分母がんで、個の を含む。 これから,第n群の最後の 重要 例題 自然数 1,2, (1) 左から 然数をm (2)150は るか。 指針 群数列 解答 (1) 左 番目 (2) 19 して 並べられた 1/2,3, (1)①の 第1群から第n群までの項数は 1+2+3+…+n=1/23n(n+1) 第210項が第n群に含まれるとすると 108-8-(1-x) + 数の分子は1/27(n+1) (n-1)n<210≤n(n+1) 第峨野の初項 目の位置 よって (n-1)n<420≦n(n+1) ・・・・・ ① (2)150が 左から m (n-1)n は単調に増加し, 19・20=380, 20・21=420 であるから, ①を満たす自然数nは n=20 1 また,第210項は分母が20である分数のうちで最後の数であ る。ここで,第n群に含まれるすべての数の和は ・20・21=210 2 122<15 第12君 群の1 ゆえに, 求める和は k2+1 1 = k=1 2 2 \k=1 =1445 1/12712.12m(n-1)+1}+(n-1) 1)+n (x²+1)=(20-21-41 +20) n²+1 ÷n= 2 は第n群の数の分 の和 等差数列の和 また、 よって (20・21・41+20) n(2a+ (n-1)d) ある。 練習 ③ 112 2の累乗を分母とする既約分数を,次のように並べた数列 1 3 1 3 5 7 135 2'4'4'8'8 8'8' 16' 16' 16' について,第1項から第100項までの和を求め 15 1 16' 32' ****** 類 岩手大 練習 113

解決済み 回答数: 1