学年

教科

質問の種類

数学 高校生

4️⃣問1、問2の解説をお願いします

afe+ *+ √5 √5 +1 x+x ①よりは = (8₁² =324 のとき、次の式の値を求めよ。 √5-1 √5 +1 (x + 7/12) ² =100- + L (√5 + 1)(√5 - 1) 324円 5×4×3×2×1 AN (8+18+ S+I+NS A D ④4④ 先生と生徒2人 (メタ君, セコイアさん), 3人の会話を読みながら、 次のアーチには適当な数字を, には 適当な数式を解答欄に答えよ。 ただし, ア, イ, ..., チの一つ一つ には数字が一つずつ対応して入り、 同じカタカナ, アルファベット の枠には同じ数字が入る。 (0) メタ : 高校数学の内容って、難しいけど奥深いよね。 宿題で出された α3 +63+c3-3abcの因数分解は大変だったけど, 面白かったな。 セコ:その問題, 知らないわ... メタ : α3+b3=(a+b)アイ ab(a+b) を利用すればいいんだよ。 α3 +63+c3-3abc ab+00² =(a+b)イ ab(a+b)+c3-3abc = (a+b+c){(a+b)_(a+b)c+c²}-ab(a+b+c) セコ: まずαの板を塗る塗り方は.. 板の塗り方を 先生らしい気づきですね。 高校数学の式変形においては、 「つじつま合わせ」 の作業はよく用いられます。 メタ:あっ、先生。 聞いていたのですか?? 先生:僕は数学の話題が聞こえてくると、職員室で仕事中であっても 駆けつけますよ。まぁ、そんなことより。 僕から問題を出そう。 1- A と因数分解できるよ。 セコ:一見難しそうに見えるけど, 式の前後で等号が成立するように つじつまを合わせることによって答えが導けるのね!! (1) a² + b² +c² の値を求めよ。 セコ: 待って。 私の結果と一致しないわ。 a+b+c=1,ab+bc+ca=-2abc-1 であるとき、 (2) a²+b+c² (3) a+b+c C /B 2 セコ (1) は、a2+b²+c^²=(a+b+cカ (ab+bc+ca) と変形 (2) は、最初に導いた となるわ。 できるから,²+62+c²=キ a+b+c3-3abc = A を用いると、a+b+c- なるわね。 (3) は ...... 分からないわ。 メタ:今日のポイント 「つじつま合わせ」がヒントになるはず...... Z3, a² + b² +c² = (a² + b ² + c²)_ (a²b² + b²c² +c²a²) だから, 答えはサジだ!! 先生: その通りです。 では, もう一つ問題を出そう。 [問2 になったんだけど...... DS 1 x+x+x3+x2 + x +1 を因数分解せよ。 ヒントを与えます。 x1 の因数分解をやってごらん。 メタ : -1=(x+1)(x_1)=B と因数分解できるね。 2. € L 2 byの メタ : そうか, x-1= B だから, (*) を利用すると, 「あるね、 1=(x−1)(x+x+1)=(x+1)(x-1)(x+x+1) メタ:大丈夫だよ。 ++1=2+夕+1一週 と因数分解できるので, 同じ結果になるよ。 セコ: メタくん、 凄いね! でも先生, x の答えにどう結びつくのですか?? 先生: 実は、自然数nに対しては, x"_1=(x-1)(x"-1+x"-2+ …..... + x + 1)... (*) という 等式が成り立つのです。 試しにn= 3,4のときを考えてごらん。 セコ: 本当だ! 3-1=(x-1)(x2+x+1) は, 等式 (*) に n=3 を代入 したものだし、x1=(x+1)(x−1)=(x-1)(x3+x2+x+1) は, 等式 (*) に n=4 を代入したものになっています!! y Z Z 14 X x+x+x3+x2 + x + 1 = | D と因数分解できるんだ! 先生 素晴らしい!! 問2のポイントになった等式(*) も, 両辺のつじ つまを合わせながら同類項整理をすることで、証明できます。 メタセコ : やっぱり, 高校数学って難しい〜 るね。 [2] 1の因数分解の結果が [素 チ 以上で問題は終

回答募集中 回答数: 0
数学 高校生

詳しく解説お願いします よろしくお願いします

の一般 の値に = () () [例題] 思考プロセス 8 二項定理の応用 (1) 11100 の十の位の数と一の位の数を求めよ。 (2) 2121400で割ったときの余りを求めよ。 式を分ける (1) 百の位以上の数をなるべく除いて考えたい。 (2400(20) で割り切れる部分を分ける。 明らかに 100で割り切れる部分を分ける。 11100 = (10+ 1)100 = (1+10) 100 = 100 Co + 100C1 ・ 10' + 100C2・102 + ... +100C100・10100 KOTE 2013 2121 = (20+1)^1 = (1+20)21 = 21Co+ 21C120' + 21C2・202+ … +21C21・2021 Action>> N” の下桁の値は、 二項定理を用いよ 解 (1) 11100 (10+ 1)100 = (1 +10) 100 = 練習 8 = 100Co1 + 100C110' + 100 C2102 + ・・・ + 100 C100 10100 ここで,r2 のとき 100 C 10 は 100の倍数であるから, 100 C2102 + ・・・ + 100 C100 1010 は 100の倍数である。 また 100 Col + 100C110' = 1 × 1 + 100 x 10 = 1001 したがって, 11100 の十の位の数は 0, 一の位の数は 1 (2) 2121 = (20+1)^1 = (1 +20)21 = 21Co1 + 21C120' + 21 C2202 + ・・・ + 21 C212021 ここで,r2のとき 21 C20 は 202=400 の倍数であ るから, 21 C2202 + ・・・ + 21 C212021 は 400の倍数である。 よって, 2121 を400で割ったときの余りは, ケア21 Co1 + 21 C120' を 400で割ったときの余りに等しい。 21 Col+ 21C120'=1×1+21×20 = 421 = 400 +21 したがって, 2121 を 400で割った余りは 21 Point... 整数 (a±1)" を α で割ったときの余り 21 (20+1), 19 (20-1) などのように, 整数a に対して (a +1) または (a-1)の 形で表される整数をn乗した整数 (a±1)" を α (0 ≦k≦n) で割ったときの余りは, 二項定理を用いて求めることができる。 (a+1)" = (1+a)" = nCo·1+nC₁ a¹ +nC₂·a²+ + ₂C₁ •a* + ··· +nCn • an (a-1)" = (−1+α)"="Co.(-1)"+C (-1)"-1α'+n C2(-1)" -2.² + ... 自然数nを用いて 11100=1+100C110'+100n と表すことができる。 +nCk(-1) "-kaw+..+nCma" 上の等式について,自の部分が α で割り切れることを利用すると (a±1)" 余り+α* で割り切れる部分) となるので、余り が求まる。 (1) 11" の百の位、十の位, 一の位の数を求めよ。 (2)311900で割ったときの余りを求めよ。 →p.37 問題8 27 1 1 多項式分数式の計算

回答募集中 回答数: 0
数学 高校生

どこから15a+35b+21cが出てきたのですか?

考え方 解 1 例題234 整数の除法の利用 3で割ると余り, 5で割ると3余り, 7で割ると4余る3桁の正の整 数のうち,最大のものを求めよ. (その1) 題意を満たす数を書き並べて規則性を見つける. 3で割って2余る数 2,5,8,11,14, 5で割って3余る数 38 13,18,23, となり,この両方を満たす数は, たとえば8である. (その1)の考え方を数式で表してみる。 (その2) (その3) (その4) 不定方程式の考えを利用する. (p.401 例題 227 参照) 整数x, y, zを用いると 3で割って2余る数は, 3x+2 5で割って3余る数は, 5y+3 7で割って4余る数は, 7z +4 である. おき方を工夫して, p.398で学習する合同式を利用する. 「3で割って余りが 2, かつ5で割って余りが3である数」 188 37 ……① を書き並べると, 0001> 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, *100=1 ...... 4, 11, 18,25,32, 39,46,53, となり,共通な数として1番目に出てくるのが53で, 以降, 105 ごとに出てくるので,これらの数は, 53+105k (k=0, 1, 2, 3, ) と表せる. ここで,53+105k<1000 より, 947 k<- -=9.01・・・ 105 よって、求める数は, 3,8, 13,18, 23, 28, 33, 38, となり、共通な数として1番目に出てくるのは8, 2番目に 23,3番目に38であり, 以降, 15ごとに現れる. したがって, ① は, 「15 で割ると余りが8の数」に一致する. いま,この数に「7で割ると余りが4の数」 を書き並べると,公倍数 8, 23, 38, 53, 68, 83, ...... 53+105・9=998 1 約数と倍数 *** 8:58+18 (p.412 に続く) それぞれ実際に書き 出してみる. 8,23,38, 15 15 15 15は3と5の最小 105は7と15の最 小公倍数 3桁の数だから 1000 より小さい。 411 整数の性質

回答募集中 回答数: 0
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0