学年

教科

質問の種類

数学 高校生

穴埋めの部分が分かりません 教えて下さい!

ーシックレベル数学IA テキスト 第3話 実数·絶対値1次不等式 第3講 高1- 高2 ベーシックレベル数学1A テキスト 第3 S1 > 実数 1) 次の分数を循現小数の表し方で書け。 (2) 循環小数0.2を分数で表せ。 1 要点整理と公式 (3) 次の値を求めよ。 (要点1実数 「有理数」 …… 2つの整数 m, nを用いて (m) 2-21 m の形で表される数(ただしn+0)。 n 3 (ex) Point Pickup 2= -0.3= 分数を循環小数で表す 「有限小数」 … 小数第何位かで終わる小数。 3 = 0.75 4 「無限小数」…… 小数部分が無限に続く小数。 (ex) (分子)-(分母)を実際に計算し、繰り返される部分を見つける。 (ex) =0.333……。 3 =0.108108……。 37 4 循環小数を分数で表す T=3.1415…… 無限小数の中で,ある所から同じ数字の並びが繰り返される小数を「 」という。 0 求めたい循環小数をxとおく。 循環小数は次のように書き表すことができる。 の 循環している部分が口桁 = 10°xを考える。 0.333………=0.3. 0.108108………=0.108 3 100xーxを計算し, xを求める。 0.518を分数で表す。 有理数は,整数, 有限小数, 循環小数のいずれかである。 x=0.518とおく。循環している部分が 桁なので、10 x= xを考える。 また、循環しない無限小数を「無理数」 という。 整数(自然数,0, 負の整数) 有限小数 循環小数 有理数と無理数を合わせて 有理数 実数 無限小数 」 という。 無理数(循環しない無限小数) 要点2 絶対値 絶対値 J。 数直線上で、原点(数0を表す点) から実数aまでの 「 と表す。 「絶対値」… a20 のとき |a|=a a<0 のとき |a| =-a 1-21 12| aの絶対値を 2 (ex) 2の絶対値は 1 -2 -1 0 -2の絶対値は 10|=0 である。また. |a|20である。 46 CAECRUIT HOLDINGS 本サービスに関する的財定権その他一切の権利は著作権者に帰属します。 また本サービスに掲載の全部または一部につき新複製-転載を禁止します。 - 44 - AECRUIT HOLDINGS 一サービスに開する知的財権その他一切の権利は著作権者に帰属します。 た本サービスに細能の全部または一部につき無断権転載を禁止します。

回答募集中 回答数: 0
数学 高校生

(1)の解説の意味が分かりません💦 どうして3の累乗をもとめるのですか?

2) 100! は一の位からいくつ0が連続する整数か答えよ. (ガウス記号を使った素因数の個数の表し方はp.501 を参照) 0 30!が3で割り切れるとき,kの最大値を求めよ.ただし, kは自 3=3, 3°=9, 3°=27, 3*=81より,3,3°, 3° について考える。 425 素因数に関する問題 で割り切れるとき、kの最大値を求めよ.ただし, kは自 Check 237 は一の位からいくつ0が連続する整数か答えよ。 30·29·28·27 6·5·4·3·2-1 3* であるから, 3*で割り切れるというこ え方(1) 30!-3*_- ポウス記号を使った素因数の個数の表し方は p.501 を参照) た) 続くということは,因数に10を含むということである。 5であるから,因数2と5の個数について調べればよいが,因数10になる は2と5は同数となることに注生意する.(2と5のうち少ない方を調べればよい。) (1) 1から30 までの自然数について, 3の倍数は, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 た 台 5 の10個 3°の倍数は,9, 18, 27 の3個 3°の倍数は, 27の1個 であるから,30!に含まれる因数3の個数は、 10+3+1=14 (個) よって,3'4が題意を満たす最大の値であるから. 求めるkの最大値は, 30-3の商 30-9の商 30-27 の商 OS ケ 自料 30m に なので k=14 00 の A0

解決済み 回答数: 1
数学 高校生

なぜここでは2通りで場合分けするのですか?

|整数nの平方が3の倍数ならば, nは3の倍数であることを証明せよ。 対偶を考えるとき, 「nが3の倍数でない」 ということを,どのような式で表すかがポイ。 基本 例題56 対偶を利用した証明 (1) 整数nの平方が3の倍数ならば, n は3の倍数であることを証明せト OO00 で面倒である。そこで, 対偶を利用した(間接)証明 を考える。 対偶を考えるとき,「nが3の倍数でない」ということを, どのような式で表すかがさ。 トとなるが,これは次のように表す(検討参照)。 n=3k+1[3 で割った余りが1], なお,命題を証明するのに, 仮定から出発して順に正しい推論を進め,結論を導く証。 を直接証明法 という。 これに対して, 背理法や対偶を利用する証明のように,仮定か 間接的に結論を導く証明法を間接証明法 という。 n=3k+2 [3 で割った余りが2] 解答 与えられた命題の対偶は ロ 「nが3の倍数でないならば, n°は3の倍数でない」 である。 nが3の倍数でないとき, kを整数として, ○直接がだめなら間接で 対偶の利用 (p.99 の検討も参照。) る のトお合S n=3k+1 または n=3k+2 るさケ焼 ( と表される。 [1] n=3k+1のとき n°=(3k+1)=9k°+6k+1 =3(3k°+2k)+1 3k+2kは整数であるから, n' は3の倍数ではない。 O ケ 43×(整数)+1の形の数に 3で割った余りが1の数 | 3の倍数ではない。 [2] n=3k+2のとき n°=(3k+2)=9k°+12k+4 =3(3k°+4k+1)+1 3k2+4k+1 は整数であるから, n'は3の倍数ではない。 [1], [2] により, 対偶が真である。 したがって,与えられた命題も真である。 Kpl 検討)整数の表し方

未解決 回答数: 1