学年

教科

質問の種類

数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1
数学 高校生

(イ)でなんでw=xyって置こうって思えるんですか? 他の解き方ありますか?

14 不等式の証明/拡張した形 2 (ア) (1) yが実数のとき, (2) a, b, c が実数のとき, 4 a2+262+c2 であることを証明せよ。 a+26+c\2 )². であることを証明せよ。 d = === (20 (イ) (1) ||<1, |y|<1のとき,y+1>x+yを証明しなさい。 (立命館大文系) (2) また,(1)を用いて,|x|<1, |y|<1, |z|<1のとき,ryz+2>x+y+zを証明しなさい。 (岐阜経済大) (1)を活用する (2) が (1) を拡張したような形の式を証明するときは,(1)を利用して (2) を示 すことをまず考えよう 本間 (ア)の場合,26262+62, (イ)の場合, ryz (ry) zとして,(1)に結び つける. b²ect + 2 a2+2bc 解答 (a+b2 4 (7) (1) (1)-()==1{2(x²+ y²)-(x+y)²}=(xy)²≥0 となるから, 証明された. 1/42+62 (左辺)= 2 2 (2) (1)の不等式を用いると, (1)-(a+b+c)=(a+b)²+(b+c)"} 2 b² + c² ) = {( a + b )² + (b + c ) ³ } 2 120++9+20) (1)の不等式は, 2 4 [答] []]] O+2) ということ. a+b b+c 12 なお, (2) は, 平方完成で直接 2 2 a+26+c\2 I= _a+b 2 y= 2 btcとして 2 示すこともできる. 4 【 (1) を利用 16{(左辺) (右辺) (イ) (1) (左辺) (右辺) =ry-x-y+1 となるから, 証明された. =(x-1)(y-1)>0 (z <1,y<1だから) (2) w=ry とおくと, |x|<1, |y|<1により,|w|<1である. よって, (1)を用いると, wz+1>w+z :.xyz +1>xy+z 各辺に1を加え,ryz+2>(ry+1) +z 右辺に(1) を使い, ryz+2> (xy+1)+2>(x+y+z となるから, 証明された . =4(α² +262+c²)-(a+26+c)2 =34²+462+3c2 -4ab-4bc-2ca =462-4(a+c)b +342-2ac+3c2 =4(6-a+c)²+2(a-c)²≥0 b- 14 演習題 (解答は p.29) (ア) p, g, r をいずれも正数とする. (1) XY-X-Y + 1 を因数分解しなさい. (2) 2+2-2と2+1の大小を比較しなさい。 (3) 2+2+2-3 と 2D+q+r-1の大小を比較しなさい. (イ) 次の(1),(2)を証明せよ. y (1) 12у2003, 1+1+ 1m (龍谷大文系) (ア) (3) では, 2+q+r=2(p+q)+と見る. (イ) 一般に. |a|+|6|≧|a+b |a+b| |a|+|6| (2) すべての実数a, b について, (岐阜聖徳学園大) 1+a+b1+|a|+|6| が成り立つ. 21

解決済み 回答数: 1
数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0