学年

教科

質問の種類

数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

(2)の問題の積の微分公式の証明の仕方が、答えを見ても分かりません。教えて下さい🙇‍♀️

3 定義、公式の証明 1) 関数f(x)のx=αにおける微分係数の定義を述べよ。 (0) ェ x (2) 関数f(x), g(x) が微分可能であるとする。 積の微分公式 {f(x)g(x)}=f'(x)g(x)+f(x)g' (z) を証明せよ. 0800-1- (宮崎大〉 A(3) f(x)=x" (n=1, 2, 3, ...) に対し,f'(x)=nz"-1であることを,数学的帰納法により 示せ. 定義をしっかり押さえておく 意 (上智大理工) 「連続」「微分可能」の定義をしっかり押さえておこう(p.34) 連続とはグラフがつながっている, 微分可能とはグラフがなめらか,というグラフのイメージをきち んと定式化したものである.なお, x=αで微分可能であれば, x=αで連続である.これは, lim{f(a+h)-f(a)}=lim·n=f' (a).0=0 f(a+h)-f(a) .. limf (a+h)=f(a) h→0 h→0 h→0 と示すことができる. 逆は成り立たない (反例は,f(x)=|x-al). 公式を証明できるようにしておく 教科書に載っている公式を証明せよ,という意表をついた出題 もある. 定義から微分の公式を証明させる問題が多いので, 教科書で確認しておこう. ( ので注意 解答 300 (1.1)\ (1) 極限値lim- h→0 f(a+h)-f(a) h x=αにおける微分係数といい、f'(α) と書く. (2) f (x+h)g(x+h)-f(x)g(x) =f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x) =f(x+h){g (z+h)-g(x)}+{f(x+h)-f(x)}g(x) XN が存在するとき,この値を関数 f(x) のこの極限値が存在するとき、 関 f(x)はx=αで微分可能である という. - ・① ①=f(エ .. -=f(x+h)- h g(x+h)-g(x) h + f(x+h)-f(x) h -g(x) h→0 として,{f(x)g(x)}=f(x)g'(x)+f'(x)g(x)ol (虹) 上式も公式と同じようにすぐ! ●えるようにしよう (3)(xx)'=nrn-1 ..... ・・・・Aであることを粉学的県紬法)に

解決済み 回答数: 1