学年

教科

質問の種類

数学 高校生

マーカー部分はなぜこのように置けるんですか?

3章 図形と方程式 例題 85 円の方程式(2) 次の円の方程式を求めよ. (1) 点 (1,2)を通り, x軸とy 軸の両方に接する円 **** (2)(1,2)を通り、x軸に接し、中心が直線 y=2x-1 上にある円 見方 中心の座標や半径を文字でおいて, 与えられた条件にあてはめる. 答 (1)半径をr (r>0) とおいて, 中心の座標をを用いて表す. (2) 中心が直線 y=2x-1 上にあることから,中心のx座標をα とすると, y 座標は 2a-1 とおける.また, x軸に接するから, (円の半径) = | (中心のy座標) | である. (1) 半径をr (r>0) とおく. 条件より、円の中心は第2象限にあり,両座標 軸に接するから,中心の座標は (-r, r) とおけ YA 第2象限 (-ray) 接する る. この点と点 (1,2)の距離がであるから, YA 接する より、 {-r-(-1)}+(r-2)²=r r2-6r+5=0 (r-1)(r-5)=0 r=1.5 r=1 のとき, 中心 (1,1) =5のとき, 中心 (55) よって, (x+1)+(y-1)'=1 (x+5)'+(y-5)²=25 5 -10 x (2)円の中心が直線 y=2x-1 上にあるから,円 の中心の座標は, (a,2a-1) とおける. また,x軸に接するから、 求める円の方程式は、 (x-a)+{y-(2a-1)}=|2a-1|_ …………① 円 ① は点 (1,2)を通るから, (1-a)+{2-(2a-1)}=|2a-1|2 整理すると, a²-10a +9=0 S 0 「第2象限の点(-1,2) を通る」, 「x軸, y 軸と 接する」ことから, 半径 をとおくと,円の方程 式は, (x+r)+(y-r)²=r 図のように,2つの円 が考えられる. x 軸に接するから, 半径は |2a-1| |2a-1|=(2a-1)2 (a-1)(a-9)=0 a=1, a=9 よって、 ①より a=1のとき, (x-1)+(y-1)=1 939 a=9 のとき (x−9)²+(y—17)²=289

解決済み 回答数: 1
数学 高校生

Focus Gold数II・Bの問題です 矢印が書いてある部分の途中式が分からないのですがどなたか教えていただけませんか?

練習 第3章 図形と方程式 127 Step Up +5 章末問題 77 (1)3点A(2, 1), B(-4, 4), C(t+1,3t+5) が一直線上にあるように, 定数tの値を定めよ. 55 (2)異なる3点A(1, -3), B(t. t-3). C(t+2.2t-1) が一直線上にあるように,定 数tの値を定めよ. (1) 2点A(2, 1), B(-4, 4) を通る直線の方程式は, |t=-1 のとき, C(0, 2) U+YA 4-1 y-1=- -4-2 (x-2)より、 x+2y-4=0 06S+5066 B (21 C 点C(t+1,3t+5) がこの直線上にあれば, 3点は一 直線上にあるから, (t+1)+2(3t+5)-40より、 2 S-4 O 2 7t+7=0 よって t=-1 別解 直線AB と直線ACが一致するときを考える。 直線AB の傾きは, 4-1 1 -4-2 2 直線ACの傾きは, (3t+5)-1 3t+4 (t+1)-2 t-1 1 3t+4 よって, より. t=-1 2t-1 直線AB と直線ACは傾きが 等しく, ともにA(2, 1) を通 る直線となる. ABの傾き1/2と一致すると きを求めるので,t+1=2の 場合だけ考えればよい. 3 (2) t=1のとき, 3点A(1,3), B(1, 2), C(31) は 一直線上にない. t≠1 のとき, 2点A(1, -3), B(t, t-3) を通る直線 の方程式は, y-(-3)=- (t-3)-(-3) t-1 (x-1) より y+3=- +1(x-1) 点C(t+2,2t-1) がこの直線上にあれば、3点は一 直線上にあるから, 2点B,Cのx座標は異なる ので、直線BC の方程式を求 めて, 点Aがこの直線上の 点であることからの値を求 er めてもよい t 2t-1+3= F-1(t+2-1) ② 途中式は? 2(t+1)(t-1)=t(t+1) t=-1 のとき,AとCは一致する. よって, tキー1だから, 2t-2=t よって, t=2 別解点 B, C のx座標が異なるので, 3点A, B, C が一直線上にあるとき, 直線AB, AC はy軸と平 行でない. t≠-1より、両辺を t+1 で 割る. t=2 のとき, B(2,-1), C(4.3) YA 3 また, AとCは異なる点なので, 直線ABの傾きは, tキー1 (t-3)-(-3) ... ① t-1 t-1 直線ACの傾きは, (2t-1)-(-3)-2(t+1) -=2 (t+2)-1 t+1 2 10 4 B ......2 (+£ 8-3A

解決済み 回答数: 1
数学 高校生

(1)の問題は平行な直線を答える問題なのになぜ平行ではないpで答えるのですか?

+25 +2011 3 例題 33 直線のベクトル方程式 D 出 ★★☆☆ 平面上の異なる3点0, A(a),B(b)において,次の直線を表すベクトル 方程式を求めよ。 ただし, 0, A,Bは一直線上にないものとする。 (1) 線分 OBの中点を通り, 直線ABに平行な直線18- (2)線分ABを2:1に内分する点を通り,直線ABに垂直な直線 3 平面上の位置ベクトル 思考プロセス 数学ⅡI 「図形と方程式」では, 直線の方程式は傾きと通る点から求めた。 Action» 直線のベクトル方程式は, 通る点と方向 (法線) ベクトルを考えよ 図で考える OP = (ア)点Cを通り, 直線ABに平行な直線上の 点Pは (ア) (イ) OC + t AB P B B 点Pは (イ)点Cを通り, 直線ABに垂直な直線上の CP AB = 0 NA NA C C ベクトル方程式は,a で表す。 解 (1) 線分 OBの中点を M とする。 A 求める直線の方向ベクトルはAB であるから, 求める直線上の点を P(b) とすると, tを媒介変数とし B P M ・求める直線は,直線AB に平行である。 OP=OM+tAB ・・・① 0 ここで OP = 1, OM = 6, AB = b−a |OM = OB=6 2 ①に代入すると 2 b = 1 ½ b+t(b− a) |AB=OBOA=a すなわち p=-ta+- 2t+1 2 (2) 線分ABを2:1に内分する点をC とする。 求める直線の法線ベクトル はAB であるから, 求める直線上の a+26 OC= 3 •P | 求める直線は, 直線AB A に垂直である。 B 1 点をP(b)とすると CP. AB = 0 ... 2 CPAB または CP = 0 これを ここで CP = OP-OC = - a+26 3 TAR AB=OB-OA=i-an ②に代入すると (pa+26). (b-a) = 0 (36-a-26) (-a)=0 としてもよい。 図 33 平面上の異なる3点A(a),B(b), C(c) がある。 線分ABの中点を通り,直 線 BC に平行な直線と垂直な直線のベクトル方程式を求めよ。 ただし, A, B, Cは一直線上にないものとする。 71 p.84 問題33

解決済み 回答数: 1