学年

教科

質問の種類

数学 高校生

共通テスト/数学2B/第2問 タ の解き方を教えて頂きたいです。 よろしくお願いします🙇‍♀️

y = 第2問 (必答問題) (配点 30 ア [1] 太郎さんは、ボールをゴールに蹴り込む ゲームに参加した。 そのゲームは、 右の図1のように地点Oか ら地点Dに向かって転がしたボールを線分 OD 上の一点からゴールに向かって蹴り込み, 地点Aから地点Bまでの範囲にボールが飛 び込んだとき, ゴールしたことにするという ものであった。 13 B A 3m 1 ル xと表すことができる。 2m (第3回 7 ) 0 B そこで太郎さんは、どの位置から蹴るとゴールしやすいかを考えることにした。 地点Oを通り, 直線 ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは,Oを原点とし、座標軸を0からCの方向をx軸の正の方向。 OからBの方向をy軸の正の方向となるようにとり、点Pの位置でボールを蹴る ことを図2のように座標平面上に表した。 A ボールが転がされ、 ボールを蹴るライン 9m 図2 このとき, A(0, 2), B (0, 5) であり, ボールを蹴るラインを表す直線の方程式は 図1 3mi (数学ⅡI・数学B 第2問は次ページに続く。) 太郎さんは,最もゴールしやすいのは、∠APB が最大になる地点であると考 えた。 ∠APBが最大となる点Pの座標を求めよう。 Px, ア イ である。 方向となす角をそれぞれα, B (1/2<B<<<12/2)とする。 このとき tand= tan (α-β) (0<x≦9) とし、図2のように、 直線AP, BP がx軸の正の X ウ クケ x+ ∠APB=α-β と表され, APBが夢になることはないから, tan (a-β)を考 えることができる。 1 クケ さらに, tan (a-β)= シス x 5, tanβ = カキ x クケコサx+シス >0であるから, 0x≦9のとき tan (α-β)>0であ る。 コサx+ シス クケ x+ エオ カキ シス XC となり, は最小値 セソをとる。 以上のことから,点Pのx座標がタ コサ と変形でき, 0<x≦9の範囲で のとき, ∠APBは最大である。 (数学ⅡⅠI・数学B 第2問は次ページに続く。) (第3回 8 )

回答募集中 回答数: 0
数学 高校生

26.1 この記述でも問題ないですよね??

0 00 基本例題26 不等式の証明 [A-B>0 の利用など] ①①①①① 次のことを証明せよ。 (1) a>b>0,c>d>0のとき ! (2) a>b>0のとき LUND a > 1,6>2のとき (3) 指針 解答 (1) a>b,c>0から c>d, b>0から したがって 別解a> b,c> 0 から ac>bc したがって ac-bdbc-bd=b(c-d) [] b>0であり,c>dよりc-d>0であるから b(c-d)>0 ac-bd>0 すなわち ac>bd (2) (左辺) (右辺) の式で通分する。 (3) (左辺) (右辺) の式で因数分解する。 【CHART 大小比較は差を作る よって 不等式 A>B を証明するには, A-B>0であることを示す。あること A>B 20 ↓ 差 A-B>0 ac>bc bc> bd ac>bd a b a(1+b)−b(1+a) 1+a 1+6 (1+a)(1+b) = したがって ac>bd a-b (1+a)(1+6) a 1+a a 1+a b 1+6 (zd+xp a-b (2) (1+a)(1+b) a>b>0より, a-b> 0, 1+α> 0, 1+b>0であるから >O ab+2>2a+b bob 1+6 = A≤³y0[+xa (1) 0=8-40=y6-1 (-vE) (r0ItxDx) -²₂01+xx0-³x= したがって (3) ab+2-(2a+b)=a(b-2)-(6-2)=(a-1)(b-2) a> 1,6>2より,α-1> 0, 6-2>0であるから (a-1)(b-2)>0 ab+2>2a+b p.47 基本事項 ① (40+8+ -20)=²xEXE=E (1) 差をとるよりも, 大小 係の基本性質を利用した が示しやすい。 ARS <A> B,B>C⇒A>C kde th HROUVIER この説明を忘れずに。 (左辺) (右辺) > 0 立剣低 木の方 (+) (+) (+) ① (zotud +20) ≤('s+|+x)(²+8+) @ αに着目して整理する。 00 この説明を忘れずに。 左辺) (右辺) > 0

回答募集中 回答数: 0
数学 高校生

(3の意味が全くわからないです。

基礎問 148 第5章 微分法 81 微分法の不等式への応用 (1) x>0のとき,> 1/2+x+1 が成りたつことを示せ. I (2) lim = 0 を示せ . H18 (3) limxlogx=0 を示せ. 精講 x→+0 (1) 微分法の不等式への応用は数学ⅡI・B 96, 数学ⅡI・B97で学習 済みです. 考え方自体は何ら変わりはありません。 (2)は78,(3)は演習問題 79 にでています. 大学入試で,これらが必要になるときは, Ⅰ. 直接与えてある (78) ⅡI. 間接的に与えてある(演習問題79) ⅢI. 証明ができるように、使う場面以前に材料が与えてある (81 のいずれかの形態になっているのがフツウですが,たまに, そうでない出題も あります。 だから、この結果は知っておくにこしたことはありません。もちろん,証明 の手順もそうです。(1) や (2) 不等式の証明,(3) 極限という流れは 44,45で 学んだはさみうちの原理です。 解答 (1) f(x)=e_ (12/21) とおく. +: f'(x)=e*-(x+1), f"(x)=e-1 x>0のとき, e> 1 が成りたち, f" (x>0 したがって,f'(x) は x>0 において単調増加. ここで,f'(0)=0 だから, x>0 のとき, f'(x) > 0 よって, f(x) は x>0 において単調増加. ここで, f(0)=0 だから,x>0のとき, f(x) > 0 žk, x>0 ©¢¾, eª > 1⁄2x²+x+1 y=e² 上の点(0, 1) における接線を 求めると, y=x+1 になります。 こ のとき,右図より y=er が y=x+1 より上側にあります。だから, x>0 では x+1, すなわち,f'(x) > 0 であることが わかります. (2) x>0 mčš, (1)±h eª> {/r²+x+1> {/r² 参考 lim -= 0 だから, はさみうちの原理より 2 x " 0< ... 0 演習問題 81 2x <<x²+2x+2 lim=0 注解答では,x+1を切り捨てていますが,そのままだと次のように なります. lim(-tlogt)=limax= また, lim-tlogt) = -lim (tlogt) t → +0 t→ +0 IC t→+0 (3) (2)において, x=log 3/12 とおくと,t+0 のとき,→∞ また,ex=elog/l=1 t' ポイント t→+0 lim IC et 0<- x=-logt だから, I→∞0 I limlogt0 すなわち, lim xlogx=0 x→+0 2 x+2+ -=0 lim X-00 = 0 を示せ . logr IC 2 I A (1) x>0 のとき,√x>10gを示せ. logr (2) lim y=ez 149 y=x+1 =0 lim xlogx=0 x→+0 第5章

回答募集中 回答数: 0